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Abstract

Gross primary production (GPP) determines the amounts of carbon and energy that enter terrestrial ecosystems. However, the

tremendous uncertainty of the GPP still hinders the reliability of the GPP estimates and therefore understanding of the global

carbon cycle. In this study, using observations from global eddy covariance (EC) flux towers, we appraised the performance of

22 widely used GPP models and quality of major spatial data layers that drive the models. Results show that the global GPP

products generated by the 22 models varied greatly in the means (from 92.7 to 178.9 Pg C yr-1), trends (from -0.25 to 0.84

Pg C yr-1). Model structures (i.e., light use efficiency models, machine learning models, and process-based biophysical models)

are an important aspect contributing to the large uncertainty. In addition, various biases in currently available spatial datasets

have found (e.g., only 57% of the observed variation in photosynthetically active radiation was explained by the spatial dataset),

which contributed greatly affects global GPP estimates. Our analysis indicates that the model development did not converge

GPP simulations with the advance of time. Moving forward, research into efficacy of model structures and the precision of

input data may be more important than the development of new models for global GPP estimation.

Significance Statement

Gross primary production (GPP), the amount of carbon fixed during photosynthesis in a given length of
time, is the fuel of life and one of the key components of the global carbon cycle. Although numerous efforts
have been made to estimate GPP at the global scale, its uncertainty has remained high for decades. It is
necessary to evaluate the performance of relevant models and supporting datasets against high-quality field
measurements to find out where the loose parts are, and then tighten the loose ends. Our study reveals that
large biases exist in some of the models and driving spatial data products, and addressing these biases is a
high priority in modeling GPP from site to global scales.
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Introduction

Terrestrial gross primary production (GPP) or the total photosynthetic uptake of carbon by plants plays a
critical role in maintaining the global carbon balance between the biosphere and the atmosphere. However,
the estimation of terrestrial GPP by existing models remains highly uncertain, with global estimates ranging
widely between 92.7 to 168.7 Pg C yr-1 (1, 2). This large uncertainty poses a serious obstacle to quantifying
and understanding the global carbon cycle (3). It is broadly agreed that, to reduce the uncertainty of GPP
estimation and advance carbon cycle science, it is crucial to consider: (1) the impacts of model structure,
(2) the determination of parameter values, and (3) the quality of data feeding in GPP models (4, 5).

Model structure has been considered as one of the most important factors that affect model performance
(6). Yet, large structural differences can be observed among GPP models. For example, the fraction of
photosynthetic active radiation (FPAR), an important parameter in the light use efficiency (LUE) models,
has been treated in disparate ways, either approximated by enhanced vegetation index (EVI) in the vegetation
photosynthesis model (VPM) (7), as a linear function of normalized difference vegetation index (NDVI) in
the eddy covariance-light use efficiency (EC-LUE) model (9), or as a nonlinear function of leaf area index
(LAI) according to Beer’s Law, among others(10). A similar situation exists for representing temperature
stress (TS), water stress (WS), and their interactions among models. The moderate resolution imaging
spectroradiometer (MODIS) model and the VPM model adopt a multiplicative structure to represent the
collective influences of WSand TS on GPP (12, 7). The EC-LUE model, on the other hand, considers that
the Liebig’s law is ecologically more reasonable in representing the effects of WS and TS (8).

The estimation of model parameters often affect the simulation accuracy of the model, thus rigorous model
parameterization and calibration should be adopted in GPP modeling (13). Variation in the values of the
same biophysical parameters among different models is a major concern in GPP estimation. For example,
the maximum light use efficiency (LUE(max)), a parameter used in LUE-based GPP models, represents the
maximum efficiency of unit vegetation converting energy to photosynthates and therefore should be relatively
stable (14). However, it has taken many different values in LUE-based GPP models. In the MODIS model,
LUE(max) values are biome-specific, varying from 0.604 to 1.259 g C MJ-1 (12, 15), and similar approaches
can be found in other models (16). The EC-LUE model, on the other hand, takes a constant value at
LUE(max)=2.25 g C MJ-1, that was derived from many flux tower observations, and the authors later
advocated the use of different constant LUE(max) values for C3 and C4 plants (17). However, another study
has suggested that fixed LUE(max) value would lead to increased GPP uncertainty (18). Analysis of the
parameters of the diagnostic carbon flux model (DCFM) showed that cross-site estimation improved the
representativeness and robustness of parameter estimates (19). Studies considering a wider number of flux
towers are thus necessary for more reliable tuning of GPP model parameters.

Regional to global simulations inevitably employ spatiotemporal data for initialization or as driving forces
(20). How spatial data products affect GPP simulation has rarely been assessed because users of the data
products tend to take a leap of faith by assuming the quality of data has met the accuracy requirement,
and limited findings regarding the importance of data quality have been ignored frequently. For example,
it was found that the widely used average of eight-days MODIS satellite FPAR data was unable to reflect
the reality effectively (22). Other studies have revealed that MODIS satellite FPAR are systematically
lower than ground-measured FPAR observations in winter and spring (22). Clouds seriously affect satellite
observations in humid regions such as the Amazon (23). Even when applying a cloud correction by the
CFMask algorithm (24) only 70% of PAR can be satisfactorily simulated (25). Failure to reproduce the
driving data of the models faithfully would affect the simulation of GPP, resulting in the uncertainty of
GPP.

To address the three issues mentioned above and to improve the estimation accuracy of GPP at the global
scale, we comprehensively appraised the structure and performance of existing LUE models against GPP
estimates from 151 eddy covariance (EC) flux towers worldwide, and assessed the impacts of using currently
available data products on the estimates of global GPP using newly developed LUE models. The specific
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objectives were: (1) to compare existing models and address the model structure deficiency, if necessary, (2)
to find the optimal parameter values using GPP observed at the EC towers, (3) to develop a new model to
taking advantage of remote sensing (RS) data as directly as possible, reducing errors of intermediate data
products and algorithms, (4) to evaluate errors of spatial RS data and their impacts on GPP estimation,
and (5) to generate new GPP model and subsequent global product, after correcting biases in spatial data
layers.

Results

3.1 Comparison of model performance

Globally, the LUE-EF model had the highest correlation coefficient of r = 0.86, followed by the LUE-NDWI
model with r = 0.82 (Fig.1a). The LUE-EF model had the smallest normalized RMSE (0.50), indicating
that the difference between the LUE-EF model and EC-towers GPP was the smallest among all models.
The LUE-NDWI model had the second smallest normalized RMSE (0.52). The normalized RMSE for the
other models was larger than the two new models. Model LUE-EF simulated the amplitude of the variations
close to the data amplitude of EC-towers (SD ratio=0.93). When grouped by latitudinal zone (Fig.1b-e)
the improvements of the new models were more apparent for tropical and northern temperate zones. In the
temperate zones, the distribution of models in the Taylor diagram was relatively concentrated, whereas in
the tropical and boreal areas there were larger differences among models. When grouped by biome (Fig.S2),
the new LUE-EF model showed advantages of fit in simulating daily GPP for most biomes, both in terms of
correlation coefficients and RMSE. For example, correlation coefficients were highest for LUE-EF in deciduous
broadleaved and evergreen needleleaf forests, wetlands and grasslands (DBF, ENF, WET and GRA), with
LUE-NDWI being the second highest in the latter three of those. It is important to note that these biomes
also have the largest number of EC-towers. It is relevant to note that many biomes are underrepresented in
the current EC-tower network, such as closed shrublands or deciduous needle-leaved forests (CSH and DNF),
each represented by only one and two EC-towers. The Taylor diagram shows that the models in CSH, DNF
and SAV are more dispersed, which means that model performances in these biomes vary greatly.

<Fig 1 roughly here>

Fig.1. The Taylor diagram showing (a) the performance of all model data from EC-towers
were used.; (b-e) the performance of all model under different latitudes, where N and S
represent the northern and southern hemispheres, respectively. Color dots represent the models
in the corresponding legend. Taylor diagram is a polar graph in which the cosine of the angle between the
X-axis is the correlation coefficient between the GPP of the model and EC-tower. The radial direction is the
ratio of model to EC-tower GPP standard deviation. The grey arcs represent RMSE normalized by standard
deviation for each model. The n is number of EC-towers.
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The ability of a model to capture temporal changes is one of the keys to evaluating the performance of GPP
models. The double mass curve (cumulative GPP predicted by model versus cumulative GPP observed at
EC-towers) computed per site can reflect the ability of models to simulate the temporal changes of GPP
(Fig.2). From the distribution of double mass curve, results show that, among the 10 models compared,
the distribution cumulated GPP for the LUE-EF was the most concentrated around the 1:1 correspondence
against the cumulated GPP from EC-towers, which indicates its greater ability to simulate the patterns in
temporal variability in GPP. Fig. 2 also shows the distributions of relative bias in ratio (PB), which ranged
±0.4 for all models, indicating that the models had a large heterogeneity in simulating the temporal change
of GPP. The biases were however narrower for the LUE-EF and LUE-NDWI models, respectively containing
120 and 110 of the EC-towers within ±0.2 in their PB, the largest number of EC-towers amongst all models.
This indicates that these two models have a strong comprehensive ability to capture the temporal changes
of GPP.

<Fig 2 roughly here>

Fig.2. Comparison of cumulative GPP estimates from the flux towers and the models. The
color lines represent the GPP value of cumulative comparison between the EC-tower and model for each site.
The red dashed line is the 1:1 reference to the differences of modeled GPP and EC-tower. Inset histogram
shows the frequency distribution of the percentage biases (PB). The two shadowed plots are two new models
developed in this study.

3.2 Biases in remote sensing data products and consequences on global GPP
estimation

Evaluating the quality of input data and understanding the impact of data biases on GPP simulation
are prerequisites for improving GPP simulation accuracy. First, various biases were found when the spatial
datasets that feed the models for global GPP simulations were evaluated at the site scale (Fig.3; Fig.S3). For
example, the spatial PAR dataset only explained 57% of the observed PAR variation at the EC-towers, and
the slope and intercept were 1.2 and 0.57, respectively, indicating that the PAR data fields overestimated PAR
as a whole and slightly underestimated PAR at the low value. The determination coefficients of the global
datasets of CO2, LE, and H at the EC-towers were less than 20% (R2<0.2), only that of the temperature
data was efficient in representing site-scale variation (R2=0.89).

Second, the biases in the spatial datasets had a significant impact on GPP simulations. Before correcting
these biases, the simulated GPP by the LUE-EF and LUE-NDWI models explained only 49% and 61% of
the EC-tower GPP variation, and the slopes of the linear regression between simulated and tower-estimated
GPP were 1.54 and 1.31, respectively, and the corresponding intercepts were -2.09 and -1.23. These results
indicate that both models overestimated GPP as a whole, but underestimated low GPP values (Fig.4b and
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f). After correcting the biases in the spatial datasets, the R2 of LUE-EF and LUE-NDWI models improved
to 0.80 and 0.79, with the slopes closer to 1 (1.20 and 1.18 values, respectively) and the intercepts closer
to 0 (-0.59 and -0.91, respectively) (Fig.3c and g). The results also indicated that the LUE-NDWI model
was less sensitive to the biases in the spatial data fields than the LUE-EF model, as shown by the smaller
differences in R2 before and after data correction, probably attributed to the fact that the LUE-NDWI relies
on NDWI, a factor that can be derived directly from remote sensing data and thereby less prone to error
propagation than the LUE-EF model.

<Fig 3 roughly here>

Fig.3 Comparison of (a) spatial PAR and site PAR, (b) tower GPP and LUE-EF GPP (uncorrected spatial
data), (c) tower GPP and LUE-EF GPP (corrected spatial data), (d) LUE-EF GPP with uncorrected and
LUE-EF GPP corrected spatial data, (e)spatial EVI (500m resolution) and spatial EVI (10km resolution),
(f) tower GPP and LUE-NDWI GPP (uncorrected spatial data), (g) tower GPP and LUE-NDWI GPP
(corrected spatial data), and (h) LUE-NDWI GPP with uncorrected and LUE-NDWI GPP corrected spatial
data. All comparisons are based on site scale.

At the global scale, the biases in spatial data inputs had a great impact on the simulated GPP even for
the less sensitive model LUE-NDWI. Fig.4a shows the global average annual GPP distribution from 2000 to
2018, simulated by the LUE-NDWI model using corrected input data layers. The spatial pattern of GPP
agrees well with previous studies. However, the impact of data biases on the spatial pattern of simulated
GPP was obvious and not uniform across space (Fig.4b). The area overestimated is much larger than
underestimated area when the data biases were not attended, and the area fractions with GPP biases at
(-50%)-(-30%), (-30%)-(-10%),10%-30%, and 30%-50%, were 8%, 19%, 27%, 31% and 15%, respectively.
After data correction, area of GPP serious reduction occurs in the mountain systems of the Tibetan plateau
in Asia, northern Africa and South America region. Area of serious growth were observed in Australia,
northwest North America and Siberia. The global annual average GPP estimated by the LUE-NDWI, after
input data correction, was about 125.6Pg C yr-1. Without data correction, the LUE-NDWI model would
overestimate global GPP by 18% (Fig 4c and 4d). The corresponding global growth rate of GPP decreased
from 0.34 to 0.17 Pg C yr-1 after input data correction (Fig. 4e).

The comparison of global GPP products simulated by 22 models is shown in Fig 4c. The GPP products
were from TRENDY and other studies. Large differences can be seen from these models with long-term
GPP averages varying from 92.7 to 178.9 Pg C yr-1 with more GPP estimates concentrated in the 120-130
Pg C yr-1 (Fig 4d). The interannual variabilities simulated by these models were also quite different. In
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general, the inter-annual variabilities of LUE and biophysical models were greater than those of the machine
learning models. It is worth noting that the GPP simulations from the Revised-ECLUE, PR, LPJ-GUESS,
and data LUE-NDWI (after correcting input data biases) models were all within the interquartile range
(IQR) of the 22 GPP products throughout all years. In addition, the GPP from the LUE-NDWI model,
after data correction, was the closest to the median GPP value of the 22 global models. The trends of GPP
simulated by the 22 models also varied greatly from -0.25 to 0.84 Pg C yr-1 (Fig 4e). The trends of the
machine learning models were smaller than those of other models. Most model showed positive trends, only
the revised-ECLUE and CLASS-CTEM models showed downward trends, and some models demonstrated
no significant trends (i.e., MODIS, FLUXCOM ANN, FLUXCOM MARS, and FLUXCOM RF).

<Fig 4 roughly here>

Fig.4. Consequences of biased input data on LUE-NDWI GPP at global scale. (a) the mean
annual GPP from 2000 to 2018 after data correction. (b) the difference of mean annual GPP from 2000 to
2018, GPPuncorrected – GPPcorrected. Symbols indicate various levels of difference: ‘–’: -50%-(-30%), ‘-’: -30%-
(-10%), ‘±’: -10%-10%, ‘+’: 10%-30%, ‘++’: 30%-50%. The inset bar chart shows the global distribution
of the difference proportions. (c) Comparison of annual global GPP estimates from various models. The
number after each model’s name in parentheses is the number of years of the model in the interquartile
range (IQR), indicated by the shaded region. LUE-NDWI and LUE-NDWI1 are GPP estimated by LUE-
NDWI with corrected and uncorrected input data, respectively. (d) Boxplot of annual GPP values during
the study period for each model. (e) Trends of annual GPP (Pg C yr-1) by model. Symbols of LUE models
are in black, machine learning models in green, biophysical models in blue.

Discussion

4.1 Adequacy of model structure in representing processes

The understanding of the processes involved in GPP is fundamental to building a reliable GPP model.
For example, we found that failed incorporation of the effect of clouds on GPP in some existing models
significantly underestimated GPP in areas with frequent cloudy cover. Under clear sky conditions, the
upper canopy leaves are close to light saturation, while the lower canopy leaves are shaded and have limited
light (26). In contrast, under cloudy conditions, a higher proportion of the light in the form of diffuse
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radiation can reach the lower parts of the canopy, thus increasing the total photosynthetic use of PAR by
the vegetation (27). Some studies indicated that a 1% increase in diffuse radiation induces a 0.94% increase
in GPP (29, 30). In addition, many studies have shown that CO2 fertilization has a significant effect on
vegetation production, a dominant factor contributing to the 31% increase in global GPP since 1990 (30).
Nevertheless, many LUE models have not explicitly accounted for the effect of increasing atmospheric CO2

concentration(32, 33). In our study, after incorporating the impacts of both cloud cover and CO2, the
performance of the LUE-EF and LUE-NDWI models improved compared with the original EC-LUE model:
R2 improved from 0.61 to 0.68 for LUE-NDWI and from 0.61 to 0.74 for LUE-EF, respectively.

Water availability is an important factor that affects GPP(33). In this study, we adopted two alternative
parameterized expressions to represent the impact of water stress on GPP. First, the evaporative fraction (EF)
of total energy, closely related to the Bowen ratio, was used in the LUE-EF model. The relevance of LUE-EF
is grounded on the fact that less energy used for ecosystem evaporation (i.e., smaller evaporative fraction)
implies a stronger water limitation (35), which has largely been verified using flux tower measurements(35).
Nevertheless, the application of the LUE-EF model is hindered by the derivation of EF that required multiple
steps and input data layers and therefore prone to error propagation (36). In order to get a direct measure
of water stress, and therefore minimize error propagation, from satellite observations we replaced the EF
using NDWI in the LUE-NDWI model, based on the evidence that NDWI is closely related to the plant
water content and thus a good proxy for plant water stress (37). The direct use of NDWI in the LUE-NDWI
model makes it ideal for mapping GPP at the regional to global scales.

4.2 input data biases and possible impacts on GPP simulations

In this study, we found that the spatial data at the EC-tower sites had various systematic deviations, which
seriously affected GPP estimates. For example, the spatial data fields of PAR explained only 57% of the
PAR variation observed at the EC-tower sites. Reasons for the data biases are mainly rooted in the influence
of sensor errors and atmospheric factors (e.g., cloud and snow) (39, 40, 41). In addition, attempts unifying
data from different spatial and temporal resolutions also bring biases as we found that data at different
resolutions sometimes had poor correlations. The reason for the existence of resolution mismatch is mainly
caused by mixed pixels and/or different time scales (e.g., daily, 8-day, or monthly data), compared to the
spatio-temporal resolution that applies to ground conditions (42, 43). In general, spatial data errors are an
important cause of the uncertainty of GPP simulation, which might have contributed to the large differences
in GPP estimates among existing GPP models (44). Thus, improving the quality of input data fields should
be a major research component in reducing the uncertainty in GPP simulations at regional to global scales.

The comparison of existing global GPP products shows a huge variation from 92.7 to 178.9 Pg C yr-1,
which might be related to data biases (45). One should realize that the sensitivities of models to data
biases are usually different, depending on model structure. In our study, it was found that the LUE-
EF model is more susceptible to data errors, while the LUE-NDWI model is less affected by data biases
(Fig.3d). There are many GPP models in the world, and the sensitivity of each model to data biases has
not been effectively evaluated and compared. The sensitivities of the models to data deviations should be
systematically investigated in future research. Another research area that deserves more attention is how to
improve data quality. Data bias should be a primary concern in modeling GPP from site to region scales.
The existence bias of spatial data not only effects the GPP simulation, but more importantly it hinders
the observation and understanding of the earth system. Therefore, effective correction of spatial data is
critical for reducing the uncertainty in GPP simulations, and research on improving data quality should be
encouraged. In this regard, our research cautions using currently available spatial data for relevant research.

4.4 Improving GPP simulation capability: the ways forward

In this study, after data correction, the coefficients of determination for the LUE-EF and LUE-NDWI
models at site scale reached 0.80 and 0.79, respectively. The evaporative fraction parameter of the LUE-EF

7
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model involves more steps than the NDWI of the LUE-NDWI model, and consequently the risk of the error
accumulation increases. The direct observation and continuous recording of NDWI as a remote sensing
product is one of the main advantages of the LUE-NDWI model. The risk of error propagation of the LUE-
NDWI model at the regional to global scale is small. Therefore, the LUE-NDWI model is more practical and
attractive in spatially-explicit simulations of GPP. In addition, many studies now show that Sun-Induced
chlorophyll Fluorescence (SIF) has a strong near linear relationship with GPP (43), indicating SIF can be
used as a direct indicator of GPP. In principle, the simple forms of GPP models and widely available inputs,
as compared with more complex global models, make them more practical for applications over large areas
and better suited for attribution and uncertainty analysis (46, 47).

Should a balance or combination of multiple approaches be considered in the study of GPP simulation
improvement? The comparison of global GPP products shows that there are differences among the three
types of GPP models. The biophysical models showed the greatest inter-annual variability, followed by LUE
models, and the machine learning models had minimal. Some research shows the machine learning models
rely on empirical relationships between forcing variables and fluxes, which causes them barely captured
the inter-annual variation of GPP (45). In contrast, LUE models assume that GPP is only related to
environmental factors (e.g., temperature, water, etc.) and light use efficiency in relatively straightforward
forms. Compared with the biophysical models, LUE models have less parameters, and simpler structures.
This means that biophysical models have higher probability of error expansion in the processes of GPP
simulations. In addition, studies have shown that the combination of machine learning models with other
type of models have more potential to improve GPP estimation, which implies a balance or combination of
multiple approaches might be the choice to reduce the uncertainty in GPP simulation.

Vastly different GPP products, as shown by the means, trends, and interannual variabilities of GPP, gener-
ated by the 22 models suggest our current ability in simulating global GPP is not encouraging (Fig.4c). For
nearly 40 years committed to the global simulation of GPP, there does not seem to have a clear direction of
the improvement of GPP simulation. This is mainly reflected in the fact that the models did not converge
in GPP simulations with the advance of time. GPP model development is not explicitly directed, despite
the constant emergence of new models. Our research indicates that neither the structure of the model nor
the quality of the input data are error prone. Therefore, specific standards need to be developed to optimize
model structures as well as sufficient validation and calibration of the input data. Research into efficacy
of model structures and the precision of input data may be more important than the development of new
models for global GPP estimation.

Materials and Methods

Description of the LUE-EF model

This model was developed mainly based on the principles of the EC-LUE model ( 48). Specifically, the
regulation of water on GPP is represented by the evaporative fraction (EF), taking advantage of the newly
available EF products (49). In addition, two new modifiers of GPP were added to the original EC-LUE
model. The first modifier considers the impact of cloudiness on GPP. The other modifier addresses the
fertilization effect of increased CO2 concentration in the atmosphere.

The LUE-EF model can be expressed as follows:

GPP=PAR×FPAR×FCI×FCO2×LUE(MAX)×min (TS,WS) (1)

WherePAR is incident photosynthetic active radiation (MJ/m²) over a period of time; FPAR is the fraction
of PAR absorbed by the vegetation; FCI is regulation of cloudiness on GPP; FCO2 is the regulation scalar of
atmospheric CO2 concentration;LUE(MAX) is maximum light use efficiency;TS and WS are regulation scalars

8
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respectively for temperature and water stress on GPP, from which the minimum value is taken, following
the Leibig law (9). The determination of models parameters was done as:

FPAR is in practice approximated by EVI (7), since photosynthetically active of vegetation is estimated as
a ratio α of EVI , set to be α =1:

FPAREVI = α × EVI (2)

Most previous models underestimates of GPP on cloudy days mainly because photosynthesis can be increased
by diffuse radiation under cloudy conditions (28). The regulating effect of cloud cover on GPP was expressed
by cloudiness index (CI) as follow:

FCI = a × CI + b (3)

Where CI is the ratio of PAR to potential PAR (PPAR) (33). Using the FLUXNET2015 dataset, the
coefficients were determined to be a (=2.9) and b (=1.2), using the parameter optimization for nonlinear
least-squares (NLS) regression using the ‘nls’ function in R. The robustness of the NLS method was verified
by Weibull function sensitivity analysis (4).

For calculating the influence of atmospheric CO2 on GPP, we employed the algorithm in the Frankfurt
biosphere model (FBM) (46):

FCO2 = f (CO2,T) =
CCL − (T)

CCL + 2 (T)
(4)

where CCL is the internal CO2concentration of leaves, and it assumed to be 70% of atmospheric CO2 concen-
tration. Δ(Τ) is the CO2 compensation point for gross photosynthesis and photorespiration at temperature
T (oC) (47):

(T) = 40.6e
(9.46×(T−25))

(T+273.2) (5)

Similar argument for eq (4), it always is <1.0 at all T and CO2.

The regulation scalar of water on GPP, WS , was expressed as the evaporative fraction (EF) of the total
sensible and latent heat (8):

WS = EF =
LE

LE + H
(6)

where LE is latent heat flux (W m-2), andH is sensible heat flux (W m-2).

Description of the LUE-NDWI model

The NDWI, strongly related to vegetation water content (Murphy et al., 2018; )(50), can be a very good
proxy for vegetation water stress. After examining measurements from many flux towers, we found that the
following nonlinear function can be used to representWS , the regulation scalar of water stress on GPP:

WS NDWI = a ∗ (−NDWI + 0.5)
b

+ c (7)

Using the NLS method of parameter optimization adjustment, the coefficients were determined to be a
(=0.35), b (=2.14) and c (=0.086). The WS NDWI values vary between 0 and 1, with values beyond the

9
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bounds set to 0 or 1, respectively. The use of WS NDWI can be very convenient for applications from local
to global scales as the NDWI fields can be directly derived from satellite observations.

Data for Evaluation of Models and Spatial Data Products

For evaluation of models and remotely sensed data products, we used eddy covariance (EC) flux tower data
from the FLUXNET2015 dataset (https://fluxnet.fluxdata.org). Our study included data from 151 EC tower
sites which belonged to the following 12 terrestrial biomes. We used two criteria to filter the data, following
(33): (1) if more than 20% of the data in a given year was missing, the whole year was discarded, and
(2) after this first step of processing, EC-tower sites with records for less than two years were completely
discarded. EC-towers details are in the Table.S2.

To simulate global GPP, the following spatial data products were used: (1) meteorological data fields –
radiation, air temperature, latent heat flux, and sensible heat flux – derived from the second Modern-
Era Retrospective analysis for Research and Applications (MERRA-2), (2) MODIS satellite products in-
cluding enhanced vegetation index (EVI) and normalized difference wetness index (NDWI), and (3) at-
mospheric CO2 concentration from the Earth System Research Laboratory Global Monitoring Division
(https://www.esrl.noaa.gov/gmd/dv/site/). In addition, global GPP products were selected for compari-
son, including: EC-LU, revised EC-LUE, MODIS, MOD17 C6, PR, VPM, FLUXCOM, SVR, BESS, BEPS,
and 10 TRENDY products.
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46. David W. Kicklighter, Michele Bruno, Silke DZönges et al. , A first-order analysis of the potential rôle
of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models,
Tellus B: Chemical and Physical Meteorology,51 :2, 343-366 (1999).

47. A. J. W. Raich, et al. , Potential Net Primary Productivity in South America: Application of a Global
Model Published by : Ecological Society of America Stable URL : http://www.jstor.org/stable/1941899 .
POTENTIAL NET PRIMARY PRODUCTIVITY IN SOUTH AMERICA: APPLICATION OF A GLOB.
1 , 399–429 (2013).

48. R. J. Murphy, B. Whelan, A. Chlingaryan, S. Sukkarieh, Quantifying leaf - scale variations in water
absorption in lettuce from hyperspectral imagery: a laboratory study with implications for measuring leaf
water content in the context of precision agriculture.Precis. Agric. (2018).

49. C. Ding, X. Liu, F. Huang, Y. Li, X. Zou, Onset of drying and dormancy in relation to water dynamics
of semi-arid grasslands from MODIS NDWI. Agric. For. Meteorol. 234 –235 , 22–30 (2017).

50. Y. Zhang, N. C. Parazoo, A. P. Williams, S. Zhou, P. Gentine, Large and projected strengthening
moisture limitation on end-of-season photosynthesis. Proc. Natl. Acad. Sci. , 201914436 (2020).

Figures

Fig.1. The Taylor diagram showing (a) the performance of all model data from EC-towers
were used.; (b-e) the performance of all model under different latitudes, where N and S
represent the northern and southern hemispheres, respectively. Color dots represent the models
in the corresponding legend. Taylor diagram is a polar graph in which the cosine of the angle between the
X-axis is the correlation coefficient between the GPP of the model and EC-tower. The radial direction is the
ratio of model to EC-tower GPP standard deviation. The grey arcs represent RMSE normalized by standard
deviation for each model. The n is number of EC-towers.
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Fig.2. Comparison of cumulative GPP estimates from the flux towers and the models. The
color lines represent the GPP value of cumulative comparison between the EC-tower and model for each site.
The red dashed line is the 1:1 reference to the differences of modeled GPP and EC-tower. Inset histogram
shows the frequency distribution of the percentage biases (PB). The two shadowed plots are two new models
developed in this study.

Fig.3 Comparison of (a) spatial PAR and site PAR, (b) tower GPP and LUE-EF GPP (uncorrected spatial
data), (c) tower GPP and LUE-EF GPP (corrected spatial data), (d) LUE-EF GPP with uncorrected and
LUE-EF GPP corrected spatial data, (e)spatial EVI (500m resolution) and spatial EVI (10km resolution),
(f) tower GPP and LUE-NDWI GPP (uncorrected spatial data), (g) tower GPP and LUE-NDWI GPP
(corrected spatial data), and (h) LUE-NDWI GPP with uncorrected and LUE-NDWI GPP corrected spatial
data. All comparisons are based on site scale.
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Fig.4. Consequences of biased input data on LUE-NDWI GPP at global scale. (a) the mean
annual GPP from 2000 to 2018 after data correction. (b) the difference of mean annual GPP from 2000 to
2018, GPPuncorrected – GPPcorrected. Symbols indicate various levels of difference: ‘–’: -50%-(-30%), ‘-’: -30%-
(-10%), ‘±’: -10%-10%, ‘+’: 10%-30%, ‘++’: 30%-50%. The inset bar chart shows the global distribution
of the difference proportions. (c) Comparison of annual global GPP estimates from various models. The
number after each model’s name in parentheses is the number of years of the model in the interquartile
range (IQR), indicated by the shaded region. LUE-NDWI and LUE-NDWI1 are GPP estimated by LUE-
NDWI with corrected and uncorrected input data, respectively. (d) Boxplot of annual GPP values during
the study period for each model. (e) Trends of annual GPP (Pg C yr-1) by model. Symbols of LUE models
are in black, machine learning models in green, biophysical models in blue.
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