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Urban heat magnitude and effects may represent harbingers of future climate change and the urban-rural
gradientsprovide auniquenatural laboratory for identifyingbothproblemsand solutions to climate change
mitigationandadaptation.Here,weexplored the trendsanddriving forcesof landsurface temperature (LST)
along the urban-rural gradients of 26 cities in the largest urban agglomeration of China, the Yangtze River
DeltaUrbanAgglomeration,usingMODISLSTdatacombinedwithurban intensity,backgroundclimate, veg-
etationgreenness, landscapestructure, albedo,populationandgrossdomesticproduct (GDP).Wefoundthat
LST generally increased with increasing urban intensity along the urban-rural gradients while with large
diurnal and seasonal variability. Large variability also existed between the maximum and minimum LST
within the same urban intensity (e.g., 6.4 �C), suggesting cities themselves provide ready-made solutions
(minimum) to resolving heat island problems. However, the range of LST within the same intensity
decreasedwith the urban intensity and narrowed drasticallywhen the intensity reached certain thresholds
(e.g.,58–87%varyingwithseason, timeofday,andcity), implyingthat thespace forclimatemitigation isvery
limited once the urbanization intensity exceeds critical thresholds. The roles of landscape structure (com-
position and configuration) for greenspace and urban land have become increasingly important in driving
the variation of LST with increasing urban intensity from low (20%–30%), middle (45%–55%) to high (70%–
80%), clearly indicating that subtle urban landscape designing, such as less aggregated urban configuration
andmore irregular greenspace shape are effective strategies tomitigate climate change in highly urbanized
areas and cities themselves already provide such vivid demonstrations for us to find and learn.
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1. Introduction

With the rapid urbanization process, natural land surfaces are
gradually replaced by impervious surfaces, such as cement,
asphalt, and concrete. This change causes notable perturbations
to the earth’s surface energy balance, resulting in the well-
known urban heat island phenomenon, which has been extensively
documented and studied in many cities across the world (e.g.
Kalnay and Cai, 2003; Peng et al., 2012; Zhou et al., 2014). The
magnitude and effects of urban heat island may represent harbin-
gers of future climate change, as already-observed temperature
increases within cities exceed the predicted rise in global temper-
ature for the next several decades (Grimm et al., 2008), and further
urbanization around the globe has become an irreversible trend.
The urban heat island effect also has a profound impact on the lives
and health of city dwellers, who account for 55% of the world’s
population (DESA/UN-WUP, 2018). Since most land surfaces are
occupied by impervious surfaces in highly urbanized areas, there
is not much space left to reduce urban heat island through increas-
ing vegetation cover in an increasingly urbanized world. Given
these circumstances we believe the high priority should be placed
on the configuration of greenspace, will it be possible to reduce the
influence of urban heat island by changing the interior landscape
configuration in an urban system within the same urban green
space area? The land parcels with different landscape configura-
tion under the same intensity of urbanization have provided natu-
ral laboratory to investigate the possible solutions for urban heat
problems. Hence, the analysis and identification of temperature
variation and drivers along urban-rural gradient are critically sig-
nificant for future climate mitigation strategies and scientific
urban planning (Arnfield, 2003; Imhoff et al., 2010).

Earlier urban-rural heat research was conducted based onmete-
orological observations (Fast et al., 2005; ChowandRoth, 2006). Due
to the sparsely distributed observation sites, it is difficult to gain a
holistic understanding on spatial distribution temperature for such
studies. With the rapid development of satellite technology, land
surface temperature (LST)derived fromthe satellite images iswidely
applied in recentstudies (Imhoffetal., 2010;Estoqueetal., 2017;Yao
et al., 2017, 2018a,b; Zhou et al., 2018). Scholars have demonstrated
that LST is closely related to land cover pattern, local background cli-
mate,anthropogenicheatsourcesandincreasedimpervioussurfaces
and the size of the urban area (Coseo and Larsen, 2014; Debbage and
Shepherd, 2015; Lazzarini et al., 2015; Zhao et al., 2014). However,
the patterns and driving factors of surface LST remain poorly under-
stood especially for urban agglomerations.

In this paper, using MODIS LST along with urban intensity,
background climate, vegetation greenness, population, gross
domestic product (GDP), albedo and landscape structure (composi-
tion and configuration) of both greenspace and urban land in the
year 2015, we investigated the spatial trends and driving forces
of LST trends along the urban-rural gradients of 26 cities in the lar-
gest urban agglomeration area of China, i.e., the Yangtze River
Delta Urban Agglomeration. The specific objectives were (1) to
characterize the LST trends along urban-rural gradients in the
Urban Agglomeration; (2) to detect the driving factors of LST
trends across cities in the Urban Agglomeration; (3) to identify
the driving factors of LST within city based on three typical urban-
ization intensities (low, medium and high).
2. Data and methods

2.1. Study area

The Yangtze River Delta Urban Agglomeration (115�290–123�440

E, 27�450–34�510 N), located at the junction of the Yangtze River
and the East China Sea, covers an area of 215,712 km2, encompass-
ing 26 cities in total from Jiangsu province, Zhejiang province,
Anhui province and Shanghai municipality (Fig. 1). Dominated by
marine subtropical monsoon climate, the solar radiation is strong
in summer. The mean annual temperature is 16.7 �C, and the mean
annual precipitation is 1536 mm (China Meteorological Data Net-
work, 2015). With only 2.2% of the national land areas, the Urban
Agglomeration holds 11% of the Chinese population and con-
tributes almost a quarter (22%) of the Chinese national economy
(Jiangsu Statistics Bureau, 2015; Shanghai Statistics Bureau,
2015; Zhejiang Statistics Bureau, 2015). It is the most developed,
densely populated, and economically vibrant region in China.
Due to the strong interference of human activities, the Yangtze
River Delta Urban Agglomeration is facing severe environmental
problems like urban heat waves, which threaten the health of city
dwellers and regional sustainable development (Huang et al.,
2010; Tan et al., 2010).

2.2. Remotely sensed LST and urban intensity

Remotely sensed LST products were used to characterize LST
along the urban-rural gradients of the Yangtze River Delta Urban
Agglomeration. The LST data for the year 2015 were obtained from
Aqua MODIS 8-days composite products (version 5) with a spatial
resolution of 1 km � 1 km (MYD11A2, version 5 Wan et al., 2015).
The LST products were comprised of daytime (13:30) and night-
time (01:30) observations. Summer was defined as the period from
June to August, and winter was from December to February,
respectively.

The urban intensity in this paper was defined as the percentage
of built-up area within the 1 km� 1 km grid, which is equivalent to
the spatial resolution of MODIS LST data. The land cover data con-
sisting of six broad categories (farm land, forest, grassland, river
and lakes, built-up land and bare soil) for the year 2015, with a
spatial resolution 30 m � 30 m were obtained China’s National
Land Use and Cover Change (CNLUCC) dataset (Xu et al., 2018). It
was derived from visual interpretation of Landsat 8 OLI and GF-2
satellite imagery, with reference to the well-established national
land use and land cover remote sensing classification system (Liu
et al., 2005), unmanned aerial vehicle (UAV) ground survey obser-
vation system, and further evaluation by the peer experts (Ning
et al., 2018). The overall classification accuracy for the 2015 dataset
was more than 93% (Ning et al., 2018). Then the urban intensity
was calculated as:

UIi ¼ UAi

TAi
� 100% ð1Þ

where UIi is the urban intensity, UAi is the area of built-up land, and
TAi is the total area of the ith 1 km � 1 km grid.

We then calculated diurnal and seasonal mean LST for each
urban intensity bin from 0 to 100% with an interval of 1% to explore
the trends of LST along the urban-rural gradient. This approach
ignores physical locations of the pixels, which makes the continu-
ous measure of urban-rural gradient possible. The pixels that were
water body, or those with elevations more than 50 m above the
highest elevation of urban core (where urban intensity was above
50%), were excluded to avoid the effect of water body or elevation’s
effect on LST (Fig. 2; Zhou et al., 2015, 2016, 2018). Also, LST range
at each urban intensity bin from 0% to 100% was calculated. Piece-
wise regression was used to identify the thresholds of LST variation
along urban intensity gradient.

2.3. Driving forces analysis for both inter-cities and intra-cities

The potential driving forces of LST in this study included
background climate, vegetation greenness, landscape structure



Fig. 1. Location of the study area, with background map showing the climate stations and elevation.

Fig. 2. (a) The land cover map in 2015 derived from China’s National Land Use and Cover Change (CNLUCC) dataset (Xu et al., 2018); (b) urban intensity (%) calculated as the
percentage of built-up area within the 1 km � 1 km MODIS LST pixel.
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(composition and configuration) of both greenspace and urban
land, population, Gross Domestic Product (GDP) and albedo for
the corresponding year of 2015. The climate observations were
extracted from the daily data set produced by China Meteorologi-
cal Administration. There were 154 weather stations located in the
Yangtze River Delta Urban Agglomeration (Fig. 1). The climate data
included mean air temperature, precipitation, air pressure, evapo-
ration, wind speed and photosynthetically active radiation (PAR,
calculated from sunshine hours and global solar radiation accord-
ing to Zhu et al. 2010). These climate data were averaged for each
station in summer (June, July and August) and winter (December,
January and February), and were then interpolated to
1 km � 1 km grid via Anusplin software (Hutchinson, 1995) based
on thin plate smoothing spline method taking latitude, longitude
and elevation covariates into account. Vegetation greenness char-
acterized by greenspace intensity and vegetation index were used.
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Greenspace intensity within each 1 km � 1 km LST grid was calcu-
lated as the percentage of sum of forest, farm land and grassland
based on the 30 m � 30 m land cover dataset (the same approach
as urban intensity). MODIS Enhanced Vegetation Index (EVI) data
with a spatial resolution of 250 m � 250 m (MOD13Q1) from the
corresponding seasons were collected and averaged within
1 km � 1 km LST grids. Three landscape metrics: mean patch size
(AREAMN), mean shape index (SHAPEMN), and aggregation index
(AI), were adopted to reflect the landscape composition and config-
uration of green spaces and built-up land. AREAMN is the average
size of the patches. SHAPEMN describes the shape complexity,
and the value increases without limit as patch shape becomes
irregular. AI indicates the degree of aggregation. It increases as
the focal patch is increasingly aggregated and maximizes when
the patch is maximally aggregated into a single, compact patch.
They were calculated for each 1 km � 1 km grid using Fragstats
3.3 with 8 cell neighborhood (McGarigal et al., 2002). The popula-
tion and GDP data for each 1 km � 1 km LST grid were collected
from the Resources and Environmental Science Data Center of Chi-
nese Academy of Sciences (http://www.resdc.cn; Xu, 2017a,b). The
white-sky albedo (WSA) data from MODIS Bidirectional Reflec-
tance Distribution Function (BRDF) albedo product (MCD43A3)
were collected. The WSA were averaged in summer (June, July
and August) and winter (December, January and February) within
each 1 km � 1 km LST grid.

For inter-cities, we analyzed the driving factors of the LST–ur-
ban intensity slope. We used multiple linear regression to extract
the driving factors for LST trends along urban-rural gradient in
the Urban Agglomeration. Determination coefficient (R2) was used
to analyze the explanation of the selected variables to the varia-
tions of LST trend among the Urban Agglomeration in the multiple
linear fitting models.

For intra-cities, we analyzed the driving forces of LST variation
within each of three typical urban intensity intervals (20%–30%,
45%–55% and 70%–80%, indicating low, medium and high intervals)
for each city. We used a relative importance analysis approach to
quantify the relative contributions of potential drivers in R ‘‘re-
laimpo” package, which is based on variance decomposition for
multiple linear regression models (Grömping, 2006). The relaimpo
package has been widely used for separating the relative roles of
various factors in ecological studies in recent years (Belmaker
and Jetz, 2015; Huang et al., 2018). It aims to explore the contribu-
tion of driving forces of LST under different urban intensity inter-
vals in different cities for further effective mitigation and
adaption strategies intra-cities.
3. Results

3.1. Trends of LST with rising urban intensity

The LST generally increased with increasing urban intensity but
varied with season and daytime/nighttime. In summer, for all
cities, the daytime LST increased evidently and rapidly with rising
urban intensity. Large variability of LST (the difference between
maximum and minimum) within the same urban intensity existed
as well (Fig. 3). The LST changes along with urban intensity from 0%
to 100% for summer night, winter day and winter night were pro-
vided in Figs. S1–S3. The LST–urban intensity trends showed large
seasonal and diurnal difference (Fig. 4). On average, the LST–urban
intensity trends in summer day were 5.1 ± 1.2 �C (per 100% urban
intensity, hereafter). In winter, 20 out of 26 cities exhibited signif-
icant increases in daytime (p < 0.05), while one city (Yancheng)
showed cold island effect with negative LST–urban intensity linear
coefficient. The average trends in winter daytime were 0.9 ± 0.8 �C.
Xuancheng and Hefei exhibited the steepest slope of summer
daytime LST–urban intensity with 7.1 �C and 7.0 �C, while Yan-
cheng was with lowest slope, i.e., 2.7 �C. The LST–urban intensity
linear coefficient in winter day ranged from �0.9 �C (Yancheng)
to 2.2 �C (Xuancheng and Taizhou2). The mean intercept in sum-
mer and winter daytime was 31.5 ± 1.3 �C, 12.6 ± 1.0 �C respec-
tively, which indicated the seasonal difference of rural climate
condition in the Urban Agglomeration. The intercept in summer
day is largest in Shanghai (33.5 �C).

For nighttime trends, the average summer trend was 0.9 ± 0.6
�C, higher than that in winter (0.2 ± 0.5 �C). 22 out of 26 cities
exhibited significant upward LST–urban intensity trends in sum-
mer (p < 0.05). Only 14 of 26 cities were with significant increasing
nighttime LST along rising urban intensity in winter, whereas eight
cities indicated insignificant linear LST–urban intensity relation-
ship and four cities were with cold island effects. Relative to the
daytime, the nighttime LST showed a mild rising pattern with
urban intensity. The trend ranged from �0.1 �C (Changzhou) to
1.9 �C (Shaoxing and Jinhua) in summer, �1.0 �C (Zhoushan) to
1.4 �C (Chuzhou) in winter. The mean nighttime LST–urban inten-
sity linear intercept in summer was 21.5 ± 0.7 �C, in winter was 1.
0 ± 1.5 �C. Correlation analysis showed that the trends in summer
and winter daytime for 26 cities in the Urban Agglomeration were
significantly correlated (r = 0. 51, p < 0.01), whereas nighttime
trends in summer and winter were not significantly correlated.

3.2. The drivers of LST–urban intensity trend for the Urban
Agglomeration

The multiple linear regression results of LST–urban intensity
trend were showed in Table 1. LST–urban intensity trend was
significantly correlated with evaporation (r = 0.82, p < 0.001) in
summer day, and evaporation was the primary driver of daytime
LST–urban intensity trend over the Urban Agglomeration
(R2 = 0.55). In summer nighttime, evaporation and vegetation
SHAPEMN were important drivers for LST–urban intensity trend
variation among 26 cities (R2 = 0.61). The LST trends had significant
positive correlations with evaporation (r = 0.62, p < 0.01) and veg-
etation SHAPEMN (r = 0.61, p < 0.01). In winter, the daytime LST
trend variation was contributed most from air temperature, with
R2 = 0.75. The LST changing rates along urban intensity was signif-
icantly correlated with air temperature (r = 0.87, p < 0.001). In win-
ter nighttime, LST changing rate was most contributed by urban
AREAMN (R2 = 0.30). It presented significant positive correlations
with urban AREAMN (r = 0.55, p < 0.01), GDP (r = 0.53, p < 0.05),
urban AI (r = 0.53, p < 0.05), urban SHAPEMN (r = 0.50, p < 0.05).

3.3. The drivers of LST variation in typical urban intensity gradients

The LST differences between hottest pixels and coldest pixels in
the same bin averaged to be ca 6.4 �C in summer day, higher than
3.2 �C in summer night, 4.6 �C in winter day and 2.7 �C in winter
night, which indicated the chance for urban heat mitigation strate-
gies. The LST range between maximum and minimum deceased
with the increase of urban intensity. We obtained a mean thresh-
old value of 86.7% urban intensity in summer day, which meant
that generally, when urban intensity was less than 86.7%, the LST
fluctuated greatly among the same urban intensity. And when
urban intensity was larger than 86.7%, the LST range sharply
reduced to minimum. And the winter daytime threshold value
averaged at 63.0% urban intensity among 26 cities. The nighttime
threshold value for summer and winter averaged at 58.3%, 65.3%
urban intensity respectively. Fig. 5 shows the demonstrations of
several cities to identify the thresholds of relationship between
the LST range and urban intensity.

Since maximum-minimum LST difference within each urban
intensity bin for most cities is large, especially in summer day,

http://www.resdc.cn


Fig. 3. The maximum (red line), mean (green dots) and minimum (blue line) of summer daytime LST along urban intensity gradient (0–100%) in 26 cities of the Urban
Agglomeration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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we attempted to look into the detailed drivers of LST variation
within the same urban intensity of the same city. Three typical
urbanization gradients: low (L, 20%~30%), middle (M, 45%~55%)
and high (H, 70%~80%) were chosen to further analyze the driving
forces of LST variation in summer day (Fig. 6). Small cities (i.e.,
Ma’anshan, Chizhou, Chuzhou, Wuhu, Zhoushan, etc.) were
excluded for this part because the pixel samples within certain
urban intensity gradients in these cities were very scarce. For
example, there are only 15 pixels in urban intensity bin of
70~80% for Zhoushan. The results showed that EVI was the domi-
nant drivers for LST variation in summer day for the cities. The con-
tribution of climate drivers (temperate, precipitation, evaporation)
to LST variation in high urban intensity bins was the lowest among
three typical urban intensity gradients. In contrast, the landscape
structure (composition and configuration) of both greenspace
and urban land played an increasing role with increasing unban
intensity, although its contribution was still small relative to EVI.
That is, the addition of green space to urban landscape is the vital
strategy for urban heat mitigation, however, given the circum-
stance of same or similar building area quantity, especially for
the high urban intensity end with insufficient land use for green-
spaces, more attention should be paid to the landscape structure
designing in the mitigation of urban heat. Specifically, in low urban
gradient, most cities exhibited insignificant correlation with land-
scape structure except Suzhou city. In Suzhou, urban AREAMN was
significantly negative correlated with LST (r = �0.15, p < 0.05).
Vegetation AREAMN is significantly positive correlated with LST
(r = 0.14, p < 0.05), while vegetation SHAPEMN is significantly neg-
ative with LST (r = �0.14, p < 0.05). In medium urban intensity gra-
dient, several cities exhibited significant correlation with
landscape structure. For example, in Changzhou there was signifi-
cant negative correlation between urban AI and LST (r = �0.30,
p < 0.05), and vegetation AREAMN, vegetation AI and vegetation
SHAPE MN were negatively correlated with LST variation
(r = �0.33, �0.26, �0.19, respectively) in Nanjing. In high urban
gradient, the landscape structure played important roles in LST
variation for many cities. For example, LST variation in Jinhua
was negatively associated with vegetation AREAMN (r = �0.35)
and vegetation SHAPE MN (r = �0.31), and positively correlated
with urban SHAPE MN (r = 0.41, p < 0.05). In both Nantong and
Ningbo, urban AI significantly and positively correlated with LST
variation (r = 0.55, p < 0.05). The vegetation AREAMN (r = �0.43)
and vegetation SHAPE MN (r = �0.45) had an important effect on
LST variation in Shaoxing.
4. Discussion

4.1. Trends of LST with rising urban intensity in the Urban
Agglomeration

LST significantly increased with rising urban intensity during
the day and night both in summer and winter for most cities in
the Yangtze River Delta Urban Agglomeration. This finding is
consistent with former research on urban thermal environment
in the United States (Imhoff et al., 2010) and Chinese 32 major
cities (Zhou et al., 2014, 2016). Our results were quite close to
Zhou et al. (2018). They found the summer daytime trend was
4.7 ± 1.2 �C (comparable to our estimate of 5.1 ± 1.2 �C), the winter
daytime trend was 0.5 ± 0.8 �C (0.9 ± 0.8 �C), via the method
defined the temperature difference as urban pixel relative to forest
base condition, which corresponded to the urban-rural two ends
along the entire urban to rural spectrum. The slight difference
might be related to the data processing method and study period.
However, our estimate of LST trend along the urban-rural gradient
in summer daytime (5.1 ± 1.2 �C) was much higher than the finding



Fig. 4. Spatial patterns of LST trend along urban intensity from 0% to 100% in 26 cities of the Yangtze River Delta Urban Agglomeration. Cities with star sign were with
insignificant linear trends (p > 0.05), otherwise significant (p < 0.05).

Table 1
Multiple linear regression results of LST-urban intensity trend.

LST–urban
intensity
slope

Multiple linear regression R2

Daytime in
summer

slope ¼ �20:66þ 0:25� EVP 0.55***

Nighttime in
summer

slope ¼ �38:64þ 0:01� EVPþ 0:38� ðvegSHAPEMNÞ 0.61***

Daytime in
winter

slope ¼ �3:95þ 0:05� T 0.75***

Nighttime in
winter

slope ¼ �0:47þ 0:02� ðurbanAREAMNÞ 0.30**

**Significant at the 0.01 level, *** significant at the 0.001 level. EVP: evaporation; T:
air temperature; veg SHAPEMN: vegetation SHAPEMN.
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from a previous study on the Urban Agglomeration that found the
temperature difference between urban and suburban was 1.1 �C
during summer daytime (Du et al., 2016a,b). This discrepancy
was related to the fact that urban/suburban difference tends to
underestimate urban heat island intensity because suburbaniza-
tion generally occurs, particularly in highly developed regions.
Compared to traditional urban heat island effect studies based on
two ends of temperature difference (Du et al., 2016a,b; Yao et al.,
2017; Zhou et al., 2014), the urban-rural gradient approach pro-
vides a comprehensive understanding of urban thermal environ-
ment along the entire spectrum from urban to rural (Li et al., 2018).

There was significant spatial heterogeneity in trends of LST
along rising urban intensity among the Urban Agglomeration
region. The different patterns during the day and night in both sea-
sons might be largely due to the different identified dominant dri-
vers. The variation of LST–urban intensity trends among cities
during daytime in summer was largely contributed to regional
evaporation variability. Cities of the Urban Agglomeration were
with hot and humid climate. The higher soil water content usually
presents in rural area than densely developed area covered by
impervious surfaces (Zhou et al., 2016), resulting in higher evapo-
rative cooling and lower LST in the rural area. Hence, the cities with
higher mean evaporation tended to exhibit a steeper relationship
between daytime LST and urban intensity in summer. Evaporation
and vegetation SHAPEMN were significant drivers for nighttime
LST–urban intensity trend variation among 26 cities in summer.



Fig. 5. Demonstrations for the thresholds of relationship between the LST range and urban intensity in (a) summer day, Jinhua city (b) summer night, Wuxi city (c) winter
day, Wuxi city (d) winter night, Anqing city.

Fig. 6. Relative contribution of different drivers to summer daytime LST variation (relative importance, %) in low (L), medium (M) and high (H) urban intensity intervals. The
medians, the 25th and 75th percentiles were visualized in the bars and the outliers were represented as hollow points.
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The vegetation SHAPEMN equals 1 when the green patch is square
and increases without limit as green patch shape becomes more
irregular. The increases of green patch edges along with increasing
shape complexity enhance the energy flow between green patches
and surrounding environment, which could also lower the rural
area LST. The negative relationship between LST and green patches
shape complexity was supported by other studies (Zhou et al.,
2011; Maimaitiyiming et al., 2014). And the lower LST in rural area
could increase the LST trends (Yao et al., 2019). Temperature was
the dominant contributor in winter daytime LST trend. Cities with
higher temperature in winter day were with larger LST trend. The
LST–urban intensity trends in winter day were negatively
correlated with average wind speed. The low temperatures and
heavy winds accelerate temperature exchange between urban
and surrounding areas during winter, resulting in a decreased
LST–urban intensity slope in the Urban Agglomeration. The winter
nighttime variation was contributed most from urban AREAMN.
Cities with larger urban AREAMN possess larger amount of impervi-
ous surfaces, larger population, and consume larger amount of
energy, which can expand the LST gap between rural and urban
area (Du et al., 2016a,b). We also find that in this urban agglomer-
ation, the urban size (reflected by GDP and urban AREAMN) could
contribute positively to LST–urban intensity trends especially in
winter night. This denotes that in winter night, the LST–urban
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intensity trends were mainly contributed by anthropogenic heat
emissions. The nighttime LST–urban intensity trends were the con-
sequence of more surface heat storage in highly urbanized area due
to anthropogenic heat emissions from industrial, traffic and air
conditioner within domestic buildings. Also, the trend of the clo-
sely connected metropolitan areas (i.e., Shanghai, Suzhou and
Wuxi) might be underestimated due to the urban agglomeration
effect (Zhou et al., 2018). The pixels of the rural areas decrease with
accelerating urban land expansion and the rural area might be
affected by the transcended urban heat with the disappearing dis-
tances among urban areas.

4.2. Implications for urban design and planning for future climate
change mitigation

Further urbanization around the globe has become an irre-
versible trend. Also, the observed temperature increases within
cities already exceed the predicted rise in global temperature for
the next several decades (Grimm et al., 2008). The urban heat envi-
ronment provides a vivid natural lab along a rural-urban gradient
for future global temperature rise prediction and mitigation. Large
LST variation within the same urban intensity (e.g., 6.4 �C), gave us
some hints for further urban design and heat mitigation strategies.
Cities themselves provide ready-made solutions (minimum LST
within the same rural-urban gradient) to resolving heat island
problems. However, the range of LST within the same urban inten-
sity decreased with the rural-urban gradient, indicating that the
marginal heat mitigation probability is decreasing with increasing
urban intensity along the urban-rural gradient for most cities in
the Urban Agglomeration. Also, the LST range narrowed drastically
when urban intensity reached certain thresholds (e.g., 58–87%
varying with season, time of day and city), implying that the space
for climate mitigation is very limited once the urbanization inten-
sity exceeds critical thresholds.

None of previous studies have detected the threshold value of
urban intensity for the variation of LST range along the rural-
urban gradient. The urban heat island is severest in summer day,
which is consistent with former studies (Zhou et al., 2018, 2014).
The LST range threshold urban intensity in summer day is 87%,
indicating there will be no possibility for urban heat mitigation
measures when the urban intensity beyond this threshold. We
analyzed the drivers of summer daytime LST variation within three
typical urban intensity bins: low (20%–30%), middle (45%–55%) to
high (70%–80%). The roles of landscape structure (composition
and configuration) for greenspace and urban land have become
increasingly important in driving the variation of LST with increas-
ing urban intensity from low (20%–30%), middle (45%–55%) to high
(70%–80%), clearly indicating that subtle urban landscape design-
ing, such as less aggregated urban configuration and more irregular
greenspace shape are effective strategies to mitigate climate
change in highly urbanized areas. Moreover, many urban residents
dwell in highly urbanized areas that might suffer from strong
urban heat island and heat wave effects, indicating the great signif-
icance of urban landscape designing.

4.3. Limitations and suggested future research

This study illustrated LST variation along the urban intensity
gradient, while it omitted the physical distance to urban core,
another critical indicator affecting urban thermal environment.
The LST is not only determined by the corresponding pixel, but also
affected by the adjacent pixels. A new indicator coupled both
urban intensity and physical distance is needed to fully illustrate
the urban heat condition along the urban-rural gradient. Also,
Zhou et al. (2015) has indicated that the footprint of urban heat
island effect was 2.3 and 3.9 times of urban size for the day and
night, respectively. In urban agglomerations, with the inter-cities
border gradually disappearing and urban core area densely devel-
oped, the footprint of urban heat island effect is enlarging and
might affect adjacent cities. The heat interactions among cities in
highly cooperated urban agglomerations might bring us new
insights in further studies. Furthermore, more complicated factors
like building height (Allegrini and Carmeliet, 2017; Perini and
Magliocco, 2014), vegetation canopy (Howe et al., 2017), and haze
pollution (Cao et al., 2016) could also affect the urban surface
energy exchange. Also, this paper omitted the water body factor,
which played a significant role in mitigation urban heat island
effects (Du et al., 2016a,b). We focus on identifying the possible
heat mitigating solutions from already-existed landscape composi-
tion and configuration of urban land and greenspace, which are
more feasible to adopt in urban planning and design than water
bodies. In addition, the spatial interpolation of meteorological data
might bring some uncertainty to our driving forces analysis. Com-
plementary and direct observations are needed to understand the
underlying mechanisms of urban thermal environment for the bet-
ter understanding and successful mitigation and adaptation
strategies.

Contemporary urban heat environment and mitigation strate-
gies might provide valuable information for future global warming
condition in low urbanization in the next several decades as cli-
mate change and urbanization processes continue. Also, the imper-
vious surface replacement and energy consumption has intensified
global warming, which in turn has exacerbated the urban land sur-
face heat environment and processes (Arnfield, 2003; Liu et al.,
2017). Thus, successful urban-scale heat mitigation strategies and
practices can bring co-benefits for large-scale climate change mit-
igation and adaptation (Stocker et al., 2013). Moreover, using cities
as natural laboratories to develop and test hypotheses about global
warming and its impacts remains untested due to the large dispar-
ities between urban ecosystems and natural ecosystems (Grimm
et al., 2008). Future studies need complementary urban and long-
term observations (Youngsteadt et al, 2015).
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