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1  | INTRODUC TION

Vegetation have been widely evaluated in the capacity of generating 
provisioning (e.g., food and water production), regulating (e.g., car‐
bon storage and climate change mitigation), supporting (e.g., nutri‐
ent cycling), and cultural (e.g., aesthetic benefits) ecosystem services 
(Millennium Ecosystem Assessment (MEA), 2005). Although cities 

are acknowledged to mainly rely on the supply of those services 
from natural ecosystems, the role of urban areas themselves in the 
direct provision of ecosystem services are commonly ignored and 
understudied (Gaston, Ávila‐Jiménez, Edmondson, & Jones, 2013). 
In fact, green spaces can themselves be vitally important because 
they have been indicated as promising for providing local services 
to urban residents (Pulighe, Fava, & Lupia, 2016). More than 50% 
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Abstract
Urban green spaces provide manifold environmental benefits and promote human 
well‐being. Unfortunately, these services are largely undervalued, and the potential 
of urban areas themselves to mitigate future climate change has received little atten‐
tion. In this study, we quantified and mapped city‐wide aboveground carbon storage 
of urban green spaces in China's capital, Beijing, using field survey data of diameter 
at	breast	height	(DBH)	and	tree	height	from	326	field	survey	plots,	combined	with	
satellite‐derived vegetation index at a fine resolution of 6 m. We estimated the total 
amount of carbon stored in the urban green spaces to be 956.3 Gg (1 Gg = 109 g) in 
2014.	There	existed	great	spatial	heterogeneity	in	vegetation	carbon	density	varying	
from 0 to 68.1 Mg C ha‐1, with an average density of 7.8 Mg C ha−1. As expected, 
carbon	density	tended	to	decrease	with	urban	development	 intensity	 (UDI).	Likely	
being affected by vegetation cover proportion and configuration of green space 
patches, large differences were presented between the 95th and 5th quantile carbon 
density	for	each	UDI	bin,	showing	great	potential	for	carbon	sequestration.	However,	
the	 interquartile	 range	of	 carbon	density	 narrowed	drastically	when	UDI	 reached	
60%, signifying a threshold for greatly reduced carbon sequestration potentials for 
higher	UDI.	These	findings	suggested	that	urban	green	spaces	have	great	potential	to	
make contribution to mitigating against future climate change if we plan and design 
urban green spaces following the trajectory of high carbon density, but we should be 
aware that such potential will be very limited when the urban development reaches 
certain intensity threshold.
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of the world's population now resides in urban areas and this figure 
is	projected	to	be	about	68%	by	2050	(UN,	2018),	although	urban	
areas only occupy less than 3% of the earth's terrestrial surface 
(Brown,	 2001).	 The	 unprecedented	 urbanization	 has	 profoundly	
shaped urban ecosystems with fragmented landscape, disturbed 
biodiversity,	and	distinct	biogeochemical	cycle	(Delphin,	Escobedo,	
Abd‐Elrahman,	&	Cropper,	2016;	He,	Liu,	Tian,	&	Ma,	2014;	Kaushal,	
McDowell,	&	Wollheim,	2014).	In	particular,	human	activities	in	cities	
are estimated to contribute about 71% of the energy‐related carbon 
dioxide	(CO2)	emissions	(Grimm	et	al.,	2008).	Nevertheless,	a	grow‐
ing body of research is demonstrating that urban ecosystems could 
store significant amounts of carbon (Churkina, Brown, & Keoleian, 
2010;	Davies,	Edmondson,	Heinemeyer,	Leake,	&	Gaston,	2011;	Ge	
&	Zhao,	2017;	Gratani,	Varone,	&	Bonito,	2016;	Nowak,	Greenfield,	
Hoehn,	&	Lapoint,	2013;	Zhao,	Zhu,	Zhou,	Huang,	&	Werner,	2013),	
and urban green spaces can serve as an effective strategy in off‐
setting	CO2	emissions	(Dorendorf,	Eschenbach,	Schmidt,	&	Jensen,	
2015).	 Trees	 in	 urban	 forests	 which	 account	 for	 3%	 of	 the	 total	
land	area	of	the	United	States	can	sequester	about	14%	of	the	en‐
tire	amount	of	sequestration	by	the	nation's	forests	(Heath,	Smith,	
Skog,	 Nowak,	 &	Woodall,	 2011).	 An	 empirical	 study	 showed	 that	
the mean aboveground live biomass across the Seattle urbanizing 
region was 89 ± 22 Mg C ha−1, which was larger than the average 
of 53.5 Mg C ha−1	for	all	US	forests	(Hutyra,	Yoon,	&	Alberti,	2011).	
Cities have been regarded as critical locations where impacts of 
global climate change on human populations will be focused, and 
study on the regulating services of carbon storage provided by 
urban green spaces is increasingly important to better understand 
the global carbon cycle and inform sustainable development in cities 
(Mitchell et al., 2018).

Many empirical studies have shown the usefulness of remote 
sensing	satellite	data	(e.g.,	Landsat,	SPOT,	and	Quickbird)	combined	
with field survey data for quantifying the carbon pool of urban trees 
and its spatial variation caused by the rapid urbanization (Lee, Ko, & 
McPherson,	2016;	Raciti,	Hutyra,	&	Newell,	2014;	Rao,	Hutyra,	Raciti,	
& Finzi, 2013). Urban–rural gradient monitoring and multiresolution 
comparative analyses are increasingly popular approaches to identify 
the urbanization effects on aboveground vegetation carbon in urban 
ecosystems	(Huytra	et	al.,	2011;	Raciti	et	al.,	2014).	Frequent	interac‐
tion between humans and land covers in cities might create smaller 
or more segregated urban green space patches that are embedded in 
heavily	urbanized	areas	(Botzat,	Fischer,	&	Kowarik,	2016;	Qian,	Zhou,	
Yu,	&	Pickett,	2015).	Also,	 landscape	metrics	as	quantitative	indices	
indicating the spatial heterogeneity of green space patches could fa‐
cilitate the analysis of land cover change effects through linking land‐
scape	patterns	with	ecological	functions	(Qian	et	al.,	2015;	Ren	et	al.,	
2013; Zhang et al., 2017). In the first 30 years of the 21st century, fast 
urban land cover increase is forecasted to mainly take place in cities 
of	developing	countries	(Seto,	Guneralp,	&	Hutyra,	2012).	However,	
spatially explicit studies were intensively clustered in developed 
countries with increasing case studies of Chinese cities in recent sev‐
eral	years	(Liu	&	Li,	2012;	Yao,	Liu,	Zhao,	Long,	&	Wang,	2015).	Many	
studies focus on urbanization‐induced variation in carbon storage 

using coarse land use types (e.g., forest, farmland, and urban land), 
and there is limited efforts elucidating the relationship between ur‐
banization intensity and carbon storage in urban green spaces. For ex‐
ample,	estimation	results	from	219	sampling	plots	in	Harbin	revealed	
that the tree carbon storage density varied along the ring road‐based 
urban–rural	gradients	(Lv	et	al.,	2016).	Using	Landsat	TM	images	and	
inVEST	model,	Tao,	Li,	Wang,	and	Zhao	(2015)	found	that	the	carbon	
density decreased with the increasing intensity of urban development 
with a 1.5% average annual decrease from 1986 to 2011 in the ur‐
banized	areas	of	Changzhou,	China.	To	value	urban	green	spaces	 in	
mitigating climate change, a critical emerging research need is to char‐
acterize carbon storage variation in response to urbanization intensity 
and landscape structure change, and then understand the potential of 
appropriately managing urban green space landscape to enhance the 
biological carbon storage in densely urbanized Chinese cities.

China have experienced dramatic demographic urbanization and 
urban land expansion with the rapid economic growth during the 
past four decades (Sun & Zhao, 2018; Zhao et al., 2015). Beijing is 
one of the most representative cities with rapid urbanization and in‐
creasing energy consumption and carbon emissions in China. It is the 
second highest city of energy consumption in China, and the total 
CO2	emissions	of	Beijing	 in	2030	might	be	0.43	times	higher	 than	
that of 2005 (Feng, Chen, & Zhang, 2013). Urban area in Beijing has 
increased	from	801	to	2,452	km2 over the past three decades, with 
an annual expansion rate of 3.7% (Wu, Zhao, Zhu, & Jiang, 2015). 
Trade‐offs	 between	 rapid	 urbanization	 and	 environmental	 protec‐
tion will be a major challenge for Beijing's sustainable development 
(Peng, Xie, Liu, & Ma, 2016). According to the carbon emission re‐
duction	target	of	“the	13rd	Five‐Year	Plan	of	Beijing	(2016–2020),”	
the	CO2	emissions	per	unit	of	GDP	in	2020	is	to	decrease	by	20.5%	
compared with that in 2015 and the year 2020 is supposed to be the 
peak	of	total	CO2 emissions, which is a big challenge for Beijing (Liu, 
Zong,	Zhao,	Chen,	&	Wang,	2014).	In	order	to	improve	the	ability	of	
adaptation to climate change, the local government have launched 
tree	 planting	 programs	 such	 as	 the	 “Million	Mu	 Trees	 Campaign”	
(one	Mu	equals	 to	1/15	ha),	 “Planting	Where	Possible”	policy,	 and	
“Country	Parks	Circle	Projects”	to	enhance	the	ecosystem	services	
of carbon sequestration provided by urban green spaces (Jim & 
Chen,	2009).	However,	 the	ecological	 consequences	of	 those	 tree	
planting	 policies	 are	 far	 from	 being	 understood	 (Yang,	 McBride,	
Zhou,	&	Sun,	2005).	There	is	a	lack	of	spatially	explicit	estimates	of	
aboveground carbon storage over the city‐wide urbanized area of 
Beijing, let alone the other megacities of China are remains largely 
undocumented.	Humans	take	staple	responsibility	for	the	future	of	
urban ecosystems and distinct spatial patterns of carbon storage 
could be created through elaborately altering and designing the 
urban	green	spaces	(Strohbach	&	Haase,	2012).	Thus,	there	is	an	ur‐
gent need for research on carbon storage density along urbanization 
intensity gradient to understand how urban carbon stocks respond 
to urban expansion and help decision‐makers develop practical 
urban landscape management strategies to increase aboveground 
carbon	 stocks	 and	 achieve	 CO2 emissions reduction target in the 
capital of China.
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Specifically, the objectives of this study were to: (a) quantify the 
aboveground carbon storage by urban green spaces in urbanized 
areas; (b) map and investigate the spatial distribution and variation 
of carbon storage in response to urban development intensities; and 
(c) explore the relationship between the landscape structure (com‐
position	and	configuration)	and	aboveground	carbon	storage.	These	
research efforts are urgently needed to investigate the urbanization 
effects on urban green space services and consequently benefit 
landscape design and management to achieve sustainable develop‐
ment for rapidly urbanizing cities of China.

2  | MATERIAL S AND METHODS

2.1 | Study area

Beijing	is	located	between	39°28′N–41°25′N	and	115°25′E–117°30′E,	
northwestern	 of	 the	 North	 China	 Plain,	 surrounded	 by	 Yanshan	
Mountain in the west, north, and northeast. As the capital city of 
China, Beijing contains 16 districts with an administrative area of 
approximate 16,807 km2 (Figure 1). Beijing has a predominantly 
warm	temperate	continental	monsoon	climate.	The	annual	frost‐free	
period is about 186 days, the annual temperature of 10°C, and the 

average annual precipitation is 600 mm (Xie et al., 2015). Beijing has 
experienced rapid urban expansion during the past three decades 
and	 the	 urban	 area	 has	 increased	 from	 801	 to	 2,452	km2 during 
1980–2010 (Wu et al., 2015), and its population increased from 8.72 
million	in	1978	to	19.62	million	in	2010	(BMSB,	2011).	The	central	six	
districts	 (i.e.,	Chaoyang,	Dongcheng,	Fengtai,	Haidian,	Shijingshan,	
and Xicheng) have an area of 1,380 km2 (Figure 1b) and accommo‐
date 59.7% of the total permanent population of Beijing in 2010 
(Beijing	Municipal	Statistics	Bureau,	2011).	The	most	developed	area	
of Beijing is the area within the 5th Ring Road where four ring roads 
(i.e.,	2nd,	3rd,	4th,	and	5th	Ring	Road)	were	built	from	the	city	center	
to the fringe in 1992, 1999, 2001, and 2003, respectively (Figure 1c). 
Most of the cropland distributed outside the 5th Ring Road.

The	 local	 government	 have	made	 great	 efforts	 (e.g.,	 “Planting	
Where	Possible”	policy)	to	increase	the	vegetation	coverage	in	rap‐
idly urbanizing region since the ecosystem services provided by 
urban vegetation can significantly contribute to the well‐being of 
urban	residents	in	Beijing	(Qian	et	al.,	2015).	However,	Beijing	is	one	
of the most representative cities in China, which are confronted with 
serious conflicts between rapid urbanization and ecosystem service 
maintenance	(Peng	et	al.,	2017).	Therefore,	we	chose	urban	Beijing	
as the case area for spatially explicit research on the aboveground 

F I G U R E  1  The	location	of	Beijing	(a),	administrative	divisions	of	study	area	(b),	and	distribution	of	field	survey	points	(c)	[Colour	figure	
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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carbon storage of urban trees. Since this study mainly focuses on 
urban trees, the study area was restricted to the six central districts 
of Beijing. We finally excluded the areas higher than 100 m above 
sea level because the main part of it is a mountainous region such 
as	the	Fenghuangling	and	Badachu	Scenic	Resort	in	the	Haidian	and	
Shijingshan districts, with considerably different landscape feature 
from urbanized region.

2.2 | Field survey

The	 field	 survey	 was	 conducted	 between	 May	 and	 November	 in	
2014.	The	plot	size	was	set	as	900	m2.	The	shapes	of	the	plots	used	
in this study were adjusted according to the local condition of each 
plot due to the heterogeneous green space landscape in urban eco‐
system. Most of the surveyed plots were regular square shape while 
the shapes of those irregular plots were adjusted to guarantee the 
consistent survey area of 900 m2. A random sampling method was 
adopted. A total of 326 plots within the six central districts of Beijing 
were	selected	 in	this	study	 (Figure	1c).	One	hundred	and	sixty‐five	
plots were located within the 5th Ring Road and 161 plots were in the 
suburban	area	of	Beijing.	Because	within	the	4th	Ring	Road,	30	×	30	
sized green spaces were mostly located on sensitive government 
agency or private managed neighbors where access was denied, we 
conducted	vegetation	survey	mainly	in	urban	parks	(e.g.,	the	Temple	
of	Heaven	Park,	Beihai	Park,	and	Yuyuantan	Park).	The	central	loca‐
tions of the plots were positioned by GPS (Garmin GPSmap 629sc). 
Due	to	the	relatively	small	contribution	to	carbon	storage	from	shrubs	
and	herbs	(Davies	et	al.,	2011)	in	urban	ecosystem,	we	mainly	focused	
on	the	aboveground	carbon	storage	estimation	of	urban	trees.	During	
the field survey, we collected the following information for trees: spe‐
cies,	number	of	each	species,	diameter	at	breast	height	(1.3	m,	DBH	
>5 cm), tree height, and health condition of each measured tree.

2.3 | Satellite image processing and urban 
vegetation classification

Cloud‐free	SPOT	6	satellite	images	with	a	high	spatial	resolution	of	
6	m	 and	 four	 spectral	 bands	 acquired	 on	October	 15,	 2014	were	
used in this study to estimate aboveground carbon storage of urban 
green	spaces.	We	then	coordinated	Digital	Elevation	Models	(DEM)	
(downloaded from http://www.gdem.aster.ersdac.or.jp/search.jsp) 
to	conduct	geometric	correction	and	orthorectification	for	SPOT	6	
images.	Official	definitions	of	the	administrative	area	of	districts	in	
Beijing	were	used	to	cut	the	mosaic	images	using	ArcGIS	10.2.	The	
coordinate system of Albers Conical Equal Area was used for this 
study. In order to establish the relationship between aboveground 
carbon storage and vegetation index, we utilized the simplified 
Normalized	Difference	Vegetation	Index	(NDVI)	thresholds	method	
to	obtain	NDVI	from	satellite	imagery.	NDVI	is	calculated	from	the	
SPOT	6	images	with	the	following	equation:

where	 Band	 1	 and	 Band	 2	 correspond	 to	 SPOT	 6	 near‐infra‐
red spectral channel (0.760–0.890 μm) and red spectral channel 
(0.625–0.695 μm).

The	land	covers	in	this	study	were	classified	into	four	categories	
(i.e., vegetation, impervious surface, water body, and bare soil) with 
the	object‐based	image	analysis	(OBIA)	approach.	The	SPOT	6	images	
acquired	 in	October	15,	2014	explicitly	 showed	 the	distribution	of	
vegetative area in Beijing and thus can be used to effectively map 
urban green spaces (i.e., vegetated areas). Vegetation consisted of all 
vegetated areas, which referred to as green space. Impervious sur‐
face included transportation, industrial, commercial, and residential 
space. Water bodies were mainly lakes and rivers. Bare soil referred 
to	 lands	under	construction	and	non‐vegetative	areas.	 In	OBIA	ap‐
proach, an image is first segmented into objects that are classified ac‐
cording to both spectral and spatial information, such as color, shape, 
size, texture, and other features (Myint, Gober, Brazel, Grossman‐
Clarke, & Weng, 2011). When using high spatial resolution images to 
quantify the spatial distribution of land covers in urban ecosystems, 
the object‐based image classification method is superior to traditional 
pixel‐based	method	(Qian	et	al.,	2015).	Specifically,	we	use	eCogni‐
tion	Developer	8.7	 to	 segment	 the	 four‐band	SPOT	6	 images	with	
spatial scale parameter of 30 to capture the high heterogeneity, and 
then, we classified those images with a membership function nearest 
neighbor	classification	method	(Walsh	et	al.,	2008).	This	study	used	
the high spatial resolution images in Google Earth Pro to conduct ac‐
curacy assessment (Zhao et al., 2015). Also, 300 stratified random 
sampling	 points	 were	 created	 in	 Erdas	 Imagine	 2015.	 The	 overall	
accuracy of classification was 90.7% and the accuracy of vegetation 
was	92.4%,	which	can	meet	the	accuracy	requirements	of	land	cover	
change evaluation (Foody, 2002).

2.4 | Biomass calculation and carbon 
storage estimation

Biomass allometric growth equations from published literatures 
were used to estimate the dry‐weight biomass of each surveyed 
tree	 (Table	1).	The	biomass	of	an	 individual	 tree	 is	 typically	calcu‐
lated	based	on	either	the	DBH	alone,	or	a	combination	of	DBH	and	
tree height. We chose equations derived geographically close to 
our study area (Liu & Li, 2012). We calculated the aboveground bio‐
mass by adding up the calculation results from biomass equations 
for stem, branch, and leaves or directly using equations referring 
to the total aboveground biomass. When no species‐specific allo‐
metric equation could be found, equations of species affiliated to 
the same genus or the same family were used. If no equations were 
found for a genus or a family, a generalized equation derived from Jo 
and McPherson (1995) and Jo (2002) was used. Finally, the individual 
tree biomass was converted to carbon by multiplying a factor of 0.5 
(Nowak	&	Crane,	2002).	The	mean	carbon	density	for	each	plot	was	
calculated using the following Equation (2):

(1)NDVI=
Band1−Band2

Band1+Band2

(2)CDj=

∑n

i=1
Di

Aj

http://www.gdem.aster.ersdac.or.jp/search.jsp
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where CDj is the average carbon storage density for the jth survey 
plot; Di is the carbon storage for the ith tree species of the plot; n is 
the tree species number; and Ajis the plot area for the jth plot which 
equals to 900 m2 in this study.

We	 paired	 NDVI	 data	 (Equation	 1)	 with	 aboveground	 carbon	
measurements (Equation 2) at 326 sites to establish the relationship 
between	the	pixel	carbon	density	and	NDVI.	Figure	2	showed	that	
there existed a significant exponential relationship (p < 0.001) be‐
tween	carbon	density	and	NDVI:

We applied the Equation (3) to map the spatial pattern of the 
city‐wide carbon storage using ArcGIS 10.2 software. Since the 
maximum	NDVI	value	is	0.6	from	the	surveyed	spots	in	this	study,	
estimates	from	NDVI	values	beyond	0.6	might	not	be	reliable.	The	
pixels	with	NDVI	 higher	 than	 0.6	were	 excluded	 from	 the	 carbon	
storage estimation in this study.

In order to reveal the underestimation of biomass in urban areas 
from medium‐resolution images which have been found in some 
urban	ecosystems	(Davies,	Dallimer,	Edmondson,	Leake,	&	Gaston,	
2013;	Raciti	et	al.,	2014),	we	not	only	used	the	SPOT	6	images	to	map	
the carbon storage patterns in high resolution, but also extracted 
the	30	m	 resolution	NDVI	data	 (August	19,	2014)	 from	cloud‐free	
Landsat	 8	Operational	 Land	 Imager	 (OLI)	 sensors	 to	 compare	 the	
SPOT	quantification	results	with	the	coarser	resolution	estimates.

2.5 | Relationship between carbon storage and 
urban expansion

The	 administrative	 divisions	 of	 six	 districts	 (i.e.,	 Chaoyang,	
Dongcheng,	Fengtai,	Haidian,	Shijingshan,	and	Xicheng)	were	used	
to quantify the carbon stocks and compare differences in carbon 

density	between	old	(i.e.,	Dongcheng	and	Xicheng)	and	younger	(i.e.,	
Chaoyang,	Fengtai,	Haidian,	and	Shijingshan)	areas	of	the	central	re‐
gion of Beijing. In addition, we compared the carbon storage density 
of four regions between ring roads which may represent the urban–
rural gradients or urbanization of Beijing according to previous stud‐
ies	(Huang,	Su,	Zhang,	&	Koh,	2010;	Qian	et	al.,	2015).

However,	 artificially	 designated	borders	 of	 urban–rural	 gradi‐
ents as mentioned above could not display the critical landscape 
heterogeneity in urban ecosystem, and therefore, we also used the 
index	 of	 urban	 development	 intensity	 (UDI)	 based	 on	 land	 cover	
data	to	illustrate	the	urbanization	level	of	the	study	area.	The	UDI	
data of Beijing was from published spatiotemporal patterns of 
urban expansion results of Sun et al. (2018), which was derived 
from	30	m	resolution	Landsat	 images.	The	spatial	distribution	dy‐
namics of urban expansion for Beijing from the late 1970s to 2015 
was	 mapped	 by	 dividing	 the	 urban	 land	 area	 into	 1	×	1	km	 grid	
squares.	 The	UDI	was	 then	 calculated	 to	 analyze	 its	 relationship	
with the average carbon density which was divided using the same 
1	×	1	km	grids:

where	UDIi is the urban development intensity for spatial unit i, UAi 
represents the urban land area of spatial unit i,	and	TAi is the total 
area of the spatial unit i.	The	spatial	unit	was	a	1	×	1	km	grid	in	this	
study.

We	then	calculated	the	average	UDI	at	a	1%	interval	and	the	cor‐
responding value of the 95th, 50th, and 5th quantile carbon density 
as well as the interquartile range to explore how spatial variation in 
UDI	affects	carbon	stocks.	Piecewise	regression	was	used	to	iden‐
tify	 the	 thresholds	 of	 carbon	 density	 variation	with	UDI	 (Toms	&	
Lesperance, 2003). Green spots with especially high carbon density 
were	illustrated	with	examples	of	the	false	color	composite	of	SPOT	
6	data.	SPOT	estimates	were	overlaid	with	the	medium‐resolution	
estimates from Landsat data to make explicit comparison.

2.6 | Relationship between carbon storage and 
landscape structure

To	explore	the	influence	of	landscape	composition	and	compo‐
sition	of	green	spaces	on	carbon	density	under	different	UDI	levels,	
we calculated the landscape metrics of urban green space grids with 
the high (in the top 10%) and low (in the bottom 10%) carbon den‐
sity	of	each	UDI	bin	 (i.e.,	0–5,	5–10,	10–15,	15–20,	20–25,	25–30,	
30–35,	35–40,	40–45,	45–50,	50–55,	and	55–60)	and	analyzed	its	
relationship with carbon storage. Although landscape structure can 
be captured by a variety of landscape metrics, we should take the 
redundancy into account and select representative metrics (Li & Wu, 
2004).	In	this	study,	we	explored	the	relationship	between	landscape	
structure (configuration and composition) and aboveground carbon 
storage from five aspects (i.e., diversity, area, shape, dispersion, and 
aggregation)	by	adopting	six	landscape	metrics.	The	six	metrics	were:	

(3)CDj=1.3287×e
6.5621×NDVI

(4)UDIi=
UAi

TAi

×100

F I G U R E  2   Relationship between the aboveground carbon 
storage density (Mg C ha−1)	and	SPOT‐derived	Normalized	
Difference	Vegetation	Index	(NDVI)	at	the	central	six	districts	of	
Beijing	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(1)	percent	cover	of	green	spaces	(PLAND);	 (2)	Shannon's	diversity	
index	 (SHDI);	 (3)	mean	 patch	 area	 (AREA_MN);	 (4)	mean	 value	 of	
shape	index	(SHAPE_MN);	(5)	mean	Euclidian	nearest‐neighbor	dis‐
tance	(ENN_MN);	and	(6)	aggregation	index	(AI)	(Table	2,	McGarigal,	
Cushman,	Neel,	&	Ene,	2002).	PLAND	and	SHDI	indicate	the	change	
in landscape composition which can respond to anthropogenic dis‐
turbance. Some studies showed that the proportion of green space 
patches might decrease where the intensity of urbanization became 
higher, with an increase in land cover diversity (Godwin, Chen, & 
Singh,	2015;	Qian	et	 al.,	 2015).	On	 the	other	hand,	 the	 landscape	
configuration was measured using the remaining four metrics to re‐
flect the fragmentation degree and patch shape complexity of urban 
green spaces brought about by the rapid urbanization process of 
Beijing	 (Qian	et	al.,	2015).	These	metrics	were	calculated	 for	each	
1	×	1	km	spatial	unit	based	on	the	green	space	map	using	Fragstats	
4.2	with	patch	neighbors	defined	by	the	“8‐cell	rule”	(McGarigal	et	
al.,	2002).	The	spatial	distributions	of	aboveground	carbon	density	
were quantified and mapped by ArcGIS 10.2 software. Pearson cor‐
relation coefficients (p < 0.05) were given to analyze the relationship 
between landscape structure and carbon storage density. Statistical 
analyses	 of	 the	 data	 were	 performed	 in	 R	 (R	 Development	 Core	
Team,	2013).

3  | RESULTS

3.1 | Field results

We	measured	10,020	stems	of	26	species.	Top	tree	species	sam‐
pled are Populus tomentosa (Carr.), Salix babylonica, and Sophora 
japonica (Linn.) which added up to represent 56% of the sampled 
trees.	 Other	 common	 species	 include	 Pinus tabuliformis (Carr.), 
Robinia pseudoacacia (L.), Sabina chinensis (L.) Ant., Ginkgo biloba 
(L.),	and	so	on.	The	average	DBH	of	all	surveyed	trees	is	15.5	cm.	
Analyses of the field survey results showed that urban trees in 
Beijing	 city	 are	 dominant	 (80.8%)	 by	 small	 trees	 (DBH	 <20	cm)	
(Figure	3a).	Large	stems	>20	cm	in	DBH,	while	uncommon,	stored	
65.1% of the observed carbon storage (Figure 3b). Especially stems 
with	 DBH	 >40	cm	 contains	 22.0%	 of	 the	 field‐surveyed	 carbon	
storage.

3.2 | Spatial distribution of aboveground 
carbon storage

The	 spatial	 distribution	 of	 the	 aboveground	 carbon	 storage	 was	
mapped	from	Landsat	(Figure	4a)	and	SPOT	6	(Figure	4b)	data.	The	
aboveground carbon storage estimates from high‐resolution data 
(Figure	 4b)	 showed	 that	 an	 estimated	 956.3	 Gg	 (1	Gg	=	109 g) of 
carbon was stored by the aboveground vegetation of six districts 
of Beijing, and the carbon density of urban trees in the study area 
was 7.8 Mg C ha−1.	The	carbon	storage	of	urban	trees	was	highly	het‐
erogeneous.	The	carbon	storage	of	Dongcheng	and	Xicheng	which	
are the most heavily urbanized area of Beijing were significantly 
(p	<	0.05)	 lower	 than	 Chaoyang,	 Fengtai,	 and	 Haidian	 (Figure	 5a).	
Haidian	district	had	the	highest	carbon	stocks	in	the	central	six	dis‐
tricts	of	Beijing.	Differences	 in	carbon	density	were	much	smaller	
than the overall carbon stocks differences among each district 
(Figure	5a,c).	The	carbon	stocks	increased	constantly	from	the	inner	
2nd Ring Road to the outer 5th Ring Road (Figure 5d) with an abrupt 
increase	 in	 carbon	stocks	 from	 the	area	between	 the	3rd	and	4th	
Ring	Road	to	the	area	between	the	4th	and	5th	Ring	Road	(Figure	5c).

Comparatively, medium‐resolution (30 m) Landsat product 
(Figure	4a)	showed	different	spatial	patterns	of	aboveground	carbon	
storage	from	the	SPOT	estimates.	It	is	noticeable	that	medium‐res‐
olution estimates failed to reveal the carbon storage capacity of dis‐
persed	small	urban	green	spaces	(marked	by	circle	in	Figure	4)	that	
are mostly distributed in heavily urbanized area (i.e., region within 
the 5th Ring Road), and we found significant (p < 0.05) differences in 
the total stocks and carbon density variation among each urban dis‐
tricts of Beijing. Estimates of carbon stocks from the Landsat satel‐
lite images (Figure 6) showed a significant (p < 0.05) underestimation 
of	 urban	 vegetation's	 contribution,	 compared	with	 SPOT	product.	
Although the variation in carbon stocks and carbon density among 
each ring road remained similar, the total carbon stocks of Beijing 
were 582.8 Gg in the six central districts and 237.2 Gg in the region 
within the 5th Ring Road (Figure 6a,b), both of which are approxi‐
mately	60%	of	results	from	SPOT	remote	sensing	data	(Figure	5).	In	
addition,	TM	product	(Figure	6c)	failed	to	illustrate	the	high	carbon	
storage	density	of	Haidian	district	and	the	Dongcheng	and	Xicheng	
estimates	were	only	about	half	of	the	SPOT	product	(Figure	5c).

TA B L E  2   Landscape metrics (McGarigal et al., 2002) used in this study

Metric (unit) Abbreviation Description

Percent cover of green space (%) PLAND Proportional abundance of green space in the landscape

Shannon’s diversity index SHDI A measure of the diversity of patch types in a landscape that is determined by both the 
number of different patch types and the proportional distribution of area among patch 
types

Mean patch area (ha) AREA_MN Total	patch	area	divided	by	the	patch	number

Mean patch shape index SHAPE_MN Mean value of shape index

Mean Euclidian nearest‐neighbor 
distance (m)

ENN_MN Mean distance to the nearest neighboring patch of green space based on the edge‐to‐edge 
distance

Aggregation index (%) AI Proportional neighboring patches of green space
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3.3 | Relationship between carbon storage and 
urban development intensity

Carbon	density	generally	declined	with	increasing	UDI	for	both	SPOT	
and Landsat estimates in the study (Figure 7). Figure 8 further illus‐
trated	the	relationship	between	carbon	storage	and	UDI	at	1%	interval.	
The	average	carbon	density	generally	decreased	with	the	increase	in	
UDI.	However,	when	UDI	was	less	than	60%,	the	95th	quantile	carbon	
density	(Figure	8a)	fluctuated	greatly	along	the	UDI,	and	large	differ‐
ences presented between the 95th and 5th quantile carbon density 
for	each	UDI	bin	 (Figure	8a,b).	When	UDI	was	 larger	 than	60%,	 the	
interquartile	range	(IQR)	of	carbon	density	at	each	UDI	interval	sharply	

reduced (Figure 8d). It is also noticeable that all of the 95th, 50th, and 
5th quantile carbon density decreased consistently and sharply with 
the	 increase	 in	UDI.	 For	 estimates	 from	 Landsat	 data,	 although	 the	
general decreasing patterns of the 95th, 50th, and 5th quantile carbon 
density	with	increasing	UDI	was	similar,	its	95th	quantile	values	(black	
hollow	point	in	Figure	8a)	was	lower	than	that	of	SPOT	estimates	and	
the	IQR	for	Landsat	(Figure	8e)	narrowed	down	sharply	when	UDI	was	
higher	 than	45%.	Figure	9a	showed	that	areas	with	UDI	higher	 than	
60% were mainly distributed within the 5th Ring Road of Beijing and 
the grids with high carbon storage density distributed in large urban 
parks	such	as	Beijing	Olympic	Forest	Park	 (Figure	9b)	and	Temple	of	
Heaven	Park	(Figure	9c).

F I G U R E  4  Spatial	distribution	of	aboveground	carbons	storage	estimated	from	Landsat	8	(a)	and	SPOT	6	(b)	satellite	images	at	the	central	
six	districts	of	Beijing	excluding	the	areas	above	100	m	with	examples	(c	and	d)	for	spatially	explicit	illustration	[Colour	figure	can	be	viewed	
at wileyonlinelibrary.com]

(a) (b)

(c) (d)

F I G U R E  3  The	distribution	of	frequency	(a)	and	proportion	of	carbon	stocks	(b)	in	surveyed	urban	trees	classified	by	DBH	[Colour	figure	
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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3.4 | Relationship between carbon storage and 
landscape structure of urban green spaces

Scatter plots showed that variation in carbon was strongly corre‐
lated with landscape structure, but the significance (p < 0.05) of 
the relationship between carbon storage density and landscape 
metrics	 (Figure	10)	 changed	greatly	with	UDI.	The	 significant	 re‐
lationship	was	relatively	stable	for	PLAND	which	showed	positive	

correlation	with	carbon	storage	density	where	the	UDI	was	higher	
than	 25%.	When	 the	UDI	 level	was	 higher	 than	 35%,	 areas	with	
high AI tended to have high density of carbon storage. As for land‐
scape metrics of describing shape complexity and patch size, the 
correlation relationship was discontinuous and only significant at 
UDI	 of	 25%–30%	 and	 45%–50%	 for	 SHAPE_MN,	 and	 significant	
at	UDI	of	35%–40%	and	45%–50%	 for	AREA_MN.	 It	 is	notewor‐
thy that the carbon storage density decreased with the increase in 

F I G U R E  5   Spatial distribution of 
carbon storage of each districts and areas 
between two ring roads (a and b) with 
their density (c and d) of urban green 
spaces	in	Beijing,	using	SPOT	6	satellite	
images	(The	same	letters	(e.g.,	a	and	a,	
ab) indicate no significant differences, 
and different letters (e.g., a and b, or b 
and c) indicate significant differences 
(p	<	0.05)	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

F I G U R E  6   Spatial distribution of 
aboveground carbon storage of each 
districts and areas between two ring roads 
(a and b) with its density (c and d) of urban 
green spaces in Beijing, using Landsat 
8	satellite	images	(The	same	letters	
(e.g., a and a, ab) indicate no significant 
differences, and different letters (e.g., 
a and b, or b and c) indicate significant 
differences (p < 0.05)

www.wileyonlinelibrary.com
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ENN_MN	which	indicated	the	distance	to	the	nearest	neighboring	
patch of urban green space.

4  | DISCUSSION

Rapid urban expansion has the potential to result in significant im‐
pacts on vegetation carbon storage, with high population densities 
and continually growing urban areas, especially in cities of develop‐
ing countries (Seto et al., 2012). Using Beijing, the capital of China, 
as a case study, our results provide important insights into the land‐
scape drivers of aboveground carbon stocks by urban green spaces 
across urbanization gradients. Conscious planning and design of 
urban green space landscape aimed to maintain and maximize car‐
bon stores could be incorporated into urban management in order to 
mitigate future climate change.

4.1 | Comparison of aboveground carbon 
storage and carbon density in six central districts of 
Beijing with other studies

The	 mean	 aboveground	 carbon	 storage	 density	 of	 urban	 green	
spaces	 in	 six	 central	 districts	 (i.e.,	 Chaoyang,	 Dongcheng,	 Fengtai,	
Haidian,	Shijingshan,	and	Xicheng)	of	Beijing	is	7.8	Mg	C	ha−1.	The	av‐
erage	value	of	region	within	the	4th	Ring	Road	is	5.2	Mg	C	ha−1 lower 
than	 the	 7.4	Mg	C	ha−1	 from the previous study of Beijing in 2002 
by	Yang	et	al.	(2005).	It	might	be	attributed	to	the	astonishing	urban	
expansion during the past decade of Beijing as the capital of China 
and the core city of the Jing‐Jin‐Jin Urban Agglomeration, resulting 
in increased proportion of impervious surface and excessive distur‐
bance to urban green space landscape such as replacing prior patches 

with	sparse	and	young	 trees	 (Qian	et	al.,	2015;	Sun	&	Zhao,	2018;	
Wu	et	al.,	2015).	Therefore,	our	results	highlight	the	overall	negative	
urbanization effects on aboveground carbon storage in highly urban‐
ized areas of mega cities, despite the possible enhancement of urban 
environments on urban vegetation growth (Zhao, Liu, & Zhou, 2016).

The	 spatial	 variation	 in	 aboveground	 carbon	 density	 that	 we	
estimated across the central six districts of Beijing emphasized the 
importance of quantifying carbon stocks using fine‐resolution data. 
Fragmented urban development often leads to small green patches 
and isolated trees, and therefore, fine‐spatial resolution remote 
sensing data used in this study is particularly beneficial to illustrate 
the spatial variation in carbon storage (Chen et al., 2017; Mitchell et 
al.,	2018).	Due	to	the	mixed‐pixel	problem,	each	pixel	is	represented	
by the predominant land cover, and thus, maps from medium‐reso‐
lution remote sensing data such as Landsat could not capture the 
finely	grained	green	spaces	in	urbanized	areas	(Davies	et	al.,	2013;	
Raciti	 et	 al.,	 2014).	 Analyses	 in	 our	 study	 revealed	 that	 estimates	
from Landsat data in the urban ecosystems lost the important in‐
formation of large spatial variability of carbon density. An analysis in 
Leicester, UK, found that moving from 10 to 250 m resolution land 
cover data meant a 76% underestimate of aboveground carbons 
stores	 (Davies	et	 al.,	2013).	Comparative	analyses	 from	SPOT	and	
Landsat (Figures 5 and 6) in this study revealed a 39% underestimate 
of carbon storage from 6 to 30 m resolution remote sensing data. 
But using fine‐resolution data to estimate carbon storage presents 
its own challenges including intensive computation efforts, available 
spatial	extent	and	temporal	frequency	(Raciti	et	al.,	2014).	We	thus	
underlined the trade‐offs in estimating carbon storage while higher 
resolution data for urban areas are essential to illustrate the poten‐
tial of urban green spaces in mitigating climate change.

Compared with other studies including the estimates from 
mountainous region adjacent to urbanized areas, like Shenyang with 
33.2 Mg C ha−1	 (Liu	 &	 Li,	 2012),	 Hangzhou	 with	 30.25	Mg	C	ha−1 
(Zhao et a., 2010), and Xiamen with 20.8 Mg C ha−1 (Ren, Wei, & Wei, 
2011), the relatively low density of city‐wide estimated carbon stor‐
age of Beijing might be related to inconsistent definition of urban veg‐
etation (Mitchell et al., 2018) and climate background (e.g., subtropical 
monsoon	 climate	 for	 Hangzhou).	 But	 the	 result	 was	 much	 higher	
than the city with the same temperate monsoon climate‐Xi'an with 
2.77 Mg C ha−1 which was also estimated for its heavily urbanized 
areas	using	field	survey	data	and	NDVI	derived	from	satellite	images	
(Yao	et	al.,	2015).	Although	both	of	Beijing	and	Xi'an	have	long	history	
of urban development, the arid climate of Xi'an might impact the car‐
bon	storage	services	of	urban	vegetation.	Therefore,	to	facilitate	the	
local level authorities make effective urban management strategy to 
mitigate future climate change, spatially explicit intracity analyses on 
the landscape drivers are more needed than coarse regional study.

4.2 | Landscape structure drivers of aboveground 
carbon storage in urban green spaces

The	average	carbon	density	of	the	United	States	was	estimated	to	
be 76.9 Mg C ha−1	by	Nowak	et	al.	(2013)	using	urban	tree	field	data	

F I G U R E  7   Scatter plot of pixel‐based carbon density estimates 
from	SPOT	(solid	green	dot)	and	Landsat	satellite	data	(hollow	black	
dot)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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F I G U R E  8  Relationship	between	the	aboveground	carbon	storage	and	urban	development	intensity	from	SPOT	6	(solid	points)	and	
Landsat 8 satellite (black hollow points) data overlaid with the layout by 95th quantile (a), 5th quantile (b), mean (c) values of carbon density 
(Mg C ha−1)	along	the	urban	development	intensity	(%)	of	the	central	six	districts	of	Beijing;	the	interquartile	range	(IQR)	for	SPOT	(d)	and	
Landsat	(e)	estimates	were	compared	to	explore	the	threshold	of	the	relationship	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

F I G U R E  9   Spatial distribution of 
the aboveground carbon storage (a) 
displayed	by	Quantile	Classification	
standard which assigned the same number 
of pixels in ascending order of carbon 
value	to	the	0–20th,	20–40th,	40–60th,	
60–80th, and 80–100th quantile bins 
corresponding to the five classes of very 
low, low, moderate, high, and very high, 
respectively) and examples (b and c) for 
high carbon storage density of the study 
area	from	SPOT	6	product	[Colour	figure	
can be viewed at wileyonlinelibrary.com]

(b)(a)

(c)

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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from 28 cities. Chen (2015) collected empirical data from published 
literature and found that the average carbon density of vegetation 
of the urban green infrastructure in 35 major Chinese cities was 
only	21.34	Mg	C	ha−1.	The	low	vegetation	carbon	density	of	Chinese	
cities on one hand can be attributed to the relative young vegeta‐
tion stands (Chen, 2015), and on the other hand might be related 
to the landscape structure modification by the fast urban expan‐
sion	process.	During	the	past	four	decades,	China's	urbanization	is	
characterized by significant increase in impervious surface, which 
has profoundly changed the local land cover types (Liu et al., 2005; 
Wang et al., 2012). Rapid urban expansion has significantly affected 
the important ecosystem services of mitigating and adapting to cli‐
mate	change	provided	by	urban	vegetation	(Tao	et	al.,	2015;	Zhou,	
Wang,	&	Cadenasso,	2017).	Our	results	showed	that	the	correlation	
relationship between aboveground carbon storage and landscape 
metrics varied dramatically with different urbanization intensity. 
This	study	revealed	that	in	high	urbanization	intensity,	aboveground	
carbon storage was positively correlated with vegetation cover 
proportion, land cover diversity and negatively correlated with the 
aggregation degree of green space patches, which corroborates 
the	previous	findings	(Godwin	et	al.,	2015;	Zhang	et	al.,	2017).	The	
reason why aggregated green space patches showed high carbon 
storage capacity might be related to the less edge effects on vegeta‐
tion structure, which has been found in natural forest ecosystems 
(Harper	et	al.,	2005).	However,	those	previous	studies	failed	to	de‐
tect the threshold value of urbanization intensity with high variation 
in carbon density. Figure 8d shows that when the urbanization in‐
tensity (impervious surface proportion) increases to 60%, there was 
much less difference of carbon density among green space patches, 
and thus we suggest that the potential of carbon storage increase 
could be very limited when the urban development reaches cer‐
tain intensity threshold. While Zhang et al. (2017) highlighted the 
important role of landscape planning in urban forest management 
especially in heavy urbanization areas, our results emphasized the 
marginal effects of those landscape planning in increasing carbon 
storage services.

Nevertheless,	 these	 relationships	 were	 much	 weaker	 in	 areas	
with	relatively	lower	UDI	(Figure	10).	None	of	the	selected	landscape	
metrics unveiled a consistent significant correlation with carbon den‐
sity	when	UDI	was	less	than	30%,	but	an	increase	number	of	land‐
scape	metrics	were	related	with	carbon	density	when	UDI	increased.	
Most	of	those	low	UDI	areas	are	rural	parts	of	Haidian,	Fengtai,	and	
Chaoyang districts where rapid urban expansion happened in the re‐
cent decade (Figure 1c). Since relative large extent of those areas 
were dominated by forests, other local biotic factors (e.g., vegetation 
age species and vertical structure), and environmental factors (e.g., 
soil moisture) might also have important impacts on aboveground 
carbon storage (Mitchell et al., 2018). Rapid urban expansion has 
brought about profound modification of land cover types to the sub‐
urban of the central region of Beijing and has shaped dispersed vege‐
tation	landscape	of	those	areas	(Qian	et	al.,	2015).	Therefore,	in	order	
to increase aboveground carbon storage, landscape design measures 
in the future should be paid much attention, such as improving the 

proportion of green spaces at landscape level and the aggregation 
degree of green spaces. It should be noted that we used the range 
of	carbon	storage	variability	along	the	UDI	gradient	as	an	indicator	
for carbon sequestration potential, which should be valid if young 
and	old	forests/trees	are	well	mixed	together	along	the	UDI	gradient	
as the range represents possible carbon storage differences resulted 
from	forest	age,	 tree	density,	among	other	 factors.	Of	course,	 this	
concept might not work if there are few old forests/trees in the city, 
a situation not likely in Beijing, the ancient capital of China.

4.3 | Implications for urban design and planning to 
mitigate future climate change

Urban green spaces in cities provide a variety of ecosystem ser‐
vices to city‐dwellers and the carbon storage estimation results in 
this study have addressed the role that urban green spaces can play 
in the mitigating climate change. Efforts of conscious planning and 
design of urban green spaces might significantly foster the urban 
resilience to climate change (Leichenko, 2011). Previous tree plant‐
ing strategy in cities always emphasize on preserving the existing 
tree covers and planting where possible, while we suggest that much 
priority could be given to areas exclusive of rapid urban expansion 
and practicable for landscape configuration optimization in order to 
maintain and maximize carbon storage.

Rapid urban expansion, on one hand brought about profound 
modification of land cover types, shaping a relative young urban 
tree structure of Beijing (Figure 3), but on the other hand, many 
afforestation	movements	such	as	the	“National	Forest	City”	award	
(designated by the Forestry Administration of China) stimulated 
the demand for distinct design of landscape such as parks, gardens 

F I G U R E  1 0   Relationship between variation in aboveground 
carbon density (by the 90th and the 10th quantile values) and 
landscape	metrics	(AI,	ENN_MN,	AREA_MN,	SHAPE_MN,	SHDI,	
and	PLAND)	from	SPOT	6	data	of	each	urban	development	
intensity	bin	at	a	5%	interval	of	UDI	from	0%	to	60%	(the	star	
indicates relationship significances (p < 0.05) and the color bar 
(right)	indicates	their	correlation	coefficients)	[Colour	figure	can	be	
viewed at wileyonlinelibrary.com]
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or street greenbelt, which could greatly increase the carbon stor‐
age	of	urban	ecosystems.	The	landscape	structure	of	those	newly	
built urban green spaces, however, might vary with its urban de‐
velopment background, especially in Beijing and other densely 
established	cities	of	China	 (Qian	et	 al.,	 2015).	Tree	planting	pol‐
icies	 (e.g.,	 “Planting	Where	 Possible”	 policy	 and	 “Country	 Parks	
Circle	Projects”)	might	bring	increase	of	new	urban	green	spaces	
in highly urbanized areas in the forms of residential yards, commu‐
nity gardens or street trees and large green spaces such as coun‐
try	parks	 in	suburban	and	exurban	 (Gong,	Mao,	Qi,	&	Xu,	2015).	
Consequently, the local landscape structure would be significantly 
changed.	Therefore,	urbanization	effect	should	be	taken	 into	ac‐
count when making urban greening policy to enhance the ecosys‐
tem service of carbon storage provided by urban green spaces. 
In addition, many studies showed that cluster or less fragmented 
landscape configuration of urban vegetation could lower land sur‐
face temperature (Fan, Myint, & Zheng, 2015; Peng et al., 2016). 
Therefore,	changes	in	landscape	structure	are	likely	to	affect	the	
urban heat island mitigation and aboveground carbon storage by 
urban vegetation simultaneously, and other potential co‐bene‐
fits between various services provided by urban green spaces 
(Demuzere	 et	 al.,	 2014).	 Spatially	 explicit	 landscape	 assessment	
maps could combine physical and social features of urban ecosys‐
tems to facilitate multifunctional evaluation of where and what 
ecosystem services are provided by urban green spaces (Mitchell 
et	al.,	2018).	The	combination	of	these	ecosystem	services	might	
make the use of urban green spaces a preferential climate miti‐
gation	 strategy	 (Demuzere	 et	 al.,	 2014;	 Gill,	 Handley,	 Ennos,	 &	
Pauleit, 2007). According to the study (Zhao et al., 2015) from 32 
major	cities	of	China,	the	compactness	index	of	Hangzhou,	Jinan,	
Shanghai,	 Shenzhen,	 and	 Tianjin	 increased	 significantly	 during	
the past several decades, which suggest an increasingly compact 
urban expansion pattern. Given that many cities of China have 
implement tree planting programs to increase ecosystem services 
provided by urban green spaces, the results from this study might 
not only be potentially important to Beijing, but also other heavily 
urbanized cities in China. Rapid urban land growth directly leads 
to the diminishing of ecosystem services provision, and the high 
proportion of construction exerts significantly negative impact 
on ecosystem services (Peng et al., 2017). We thus emphasized 
the urgent need for these cities to identify the thresholds cou‐
pled in human‐natural systems and target specific sites that may 
enhance	the	provision	of	urban	green	spaces	services	(Demuzere	
et	al.,	2014).

4.4 | Limitations and suggested future research

This	study	has	several	limitations.	First,	some	allometric	equations	
adopted in this study are derived from natural forest ecosystems 
due to the difficulty of manipulating destructive whole‐tree cut‐
ting experiment in urban ecosystems, and thus, there might be 
overestimate of the aboveground biomass in urban green spaces 
where management activities (e.g., mowing and pruning) are 

necessary to maintain the landscape esthetic (Muratet, Pellegrini, 
Dufour,	Arrif,	&	Chiron,	 2015).	 In	 addition,	while	 this	 study	has	
explored the relationship between aboveground vegetation car‐
bon storage and landscape structure of urban green spaces, other 
variables not considered in this study will also influence urban 
vegetation	carbon	 storages.	The	variables	 include	 soil	 tempera‐
ture and texture, vegetation age structure, and microclimate con‐
ditions such as air temperature and pollution. Fine‐scale three 
dimensional	structure	of	vegetation	provided	by	Light	Detection	
And	Ranging	(LiDAR)	data	in	recent	years	has	been	proved	to	be	
of great importance in high‐resolution mapping of the spatial 
distribution of aboveground carbon stores in urban landscape of 
extreme high heterogeneity (Godwin et al., 2015; Mitchell et al., 
2018;	Raciti	et	al.,	2014).	A	comprehensive	analysis	of	these	fac‐
tors could better quantify the carbon stocks and identify the driv‐
ers	of	vegetation	carbon	storage	variation	in	urban	areas	(Hutyra	
et al., 2011). It is also noteworthy that as an important component 
of urban ecosystem carbon storage, soil organic carbon is often 
significantly disturbed by urbanization and should be taken into 
account	 in	 landscape	 design	 and	 planning	 (Edmondson,	 Davies,	
McCormack,	Gaston,	&	Leake,	2014).	Only	one	city	in	one	climatic	
zone type was studied, and it is of great interest to conduct in‐
tercity comparative study for future research to explore the re‐
lationship between landscape structure and urban aboveground 
carbon stocks.
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