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1  | INTRODUC TION

Vegetation have been widely evaluated in the capacity of generating 
provisioning (e.g., food and water production), regulating (e.g., car‐
bon storage and climate change mitigation), supporting (e.g., nutri‐
ent cycling), and cultural (e.g., aesthetic benefits) ecosystem services 
(Millennium Ecosystem Assessment (MEA), 2005). Although cities 

are acknowledged to mainly rely on the supply of those services 
from natural ecosystems, the role of urban areas themselves in the 
direct provision of ecosystem services are commonly ignored and 
understudied (Gaston, Ávila‐Jiménez, Edmondson, & Jones, 2013). 
In fact, green spaces can themselves be vitally important because 
they have been indicated as promising for providing local services 
to urban residents (Pulighe, Fava, & Lupia, 2016). More than 50% 
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Abstract
Urban green spaces provide manifold environmental benefits and promote human 
well‐being. Unfortunately, these services are largely undervalued, and the potential 
of urban areas themselves to mitigate future climate change has received little atten‐
tion. In this study, we quantified and mapped city‐wide aboveground carbon storage 
of urban green spaces in China's capital, Beijing, using field survey data of diameter 
at breast height (DBH) and tree height from 326 field survey plots, combined with 
satellite‐derived vegetation index at a fine resolution of 6 m. We estimated the total 
amount of carbon stored in the urban green spaces to be 956.3 Gg (1 Gg = 109 g) in 
2014. There existed great spatial heterogeneity in vegetation carbon density varying 
from 0 to 68.1 Mg C ha‐1, with an average density of 7.8 Mg C ha−1. As expected, 
carbon density tended to decrease with urban development intensity (UDI). Likely 
being affected by vegetation cover proportion and configuration of green space 
patches, large differences were presented between the 95th and 5th quantile carbon 
density for each UDI bin, showing great potential for carbon sequestration. However, 
the interquartile range of carbon density narrowed drastically when UDI reached 
60%, signifying a threshold for greatly reduced carbon sequestration potentials for 
higher UDI. These findings suggested that urban green spaces have great potential to 
make contribution to mitigating against future climate change if we plan and design 
urban green spaces following the trajectory of high carbon density, but we should be 
aware that such potential will be very limited when the urban development reaches 
certain intensity threshold.
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of the world's population now resides in urban areas and this figure 
is projected to be about 68% by 2050 (UN, 2018), although urban 
areas only occupy less than 3% of the earth's terrestrial surface 
(Brown, 2001). The unprecedented urbanization has profoundly 
shaped urban ecosystems with fragmented landscape, disturbed 
biodiversity, and distinct biogeochemical cycle (Delphin, Escobedo, 
Abd‐Elrahman, & Cropper, 2016; He, Liu, Tian, & Ma, 2014; Kaushal, 
McDowell, & Wollheim, 2014). In particular, human activities in cities 
are estimated to contribute about 71% of the energy‐related carbon 
dioxide (CO2) emissions (Grimm et al., 2008). Nevertheless, a grow‐
ing body of research is demonstrating that urban ecosystems could 
store significant amounts of carbon (Churkina, Brown, & Keoleian, 
2010; Davies, Edmondson, Heinemeyer, Leake, & Gaston, 2011; Ge 
& Zhao, 2017; Gratani, Varone, & Bonito, 2016; Nowak, Greenfield, 
Hoehn, & Lapoint, 2013; Zhao, Zhu, Zhou, Huang, & Werner, 2013), 
and urban green spaces can serve as an effective strategy in off‐
setting CO2 emissions (Dorendorf, Eschenbach, Schmidt, & Jensen, 
2015). Trees in urban forests which account for 3% of the total 
land area of the United States can sequester about 14% of the en‐
tire amount of sequestration by the nation's forests (Heath, Smith, 
Skog, Nowak, & Woodall, 2011). An empirical study showed that 
the mean aboveground live biomass across the Seattle urbanizing 
region was 89 ± 22 Mg C ha−1, which was larger than the average 
of 53.5 Mg C ha−1 for all US forests (Hutyra, Yoon, & Alberti, 2011). 
Cities have been regarded as critical locations where impacts of 
global climate change on human populations will be focused, and 
study on the regulating services of carbon storage provided by 
urban green spaces is increasingly important to better understand 
the global carbon cycle and inform sustainable development in cities 
(Mitchell et al., 2018).

Many empirical studies have shown the usefulness of remote 
sensing satellite data (e.g., Landsat, SPOT, and Quickbird) combined 
with field survey data for quantifying the carbon pool of urban trees 
and its spatial variation caused by the rapid urbanization (Lee, Ko, & 
McPherson, 2016; Raciti, Hutyra, & Newell, 2014; Rao, Hutyra, Raciti, 
& Finzi, 2013). Urban–rural gradient monitoring and multiresolution 
comparative analyses are increasingly popular approaches to identify 
the urbanization effects on aboveground vegetation carbon in urban 
ecosystems (Huytra et al., 2011; Raciti et al., 2014). Frequent interac‐
tion between humans and land covers in cities might create smaller 
or more segregated urban green space patches that are embedded in 
heavily urbanized areas (Botzat, Fischer, & Kowarik, 2016; Qian, Zhou, 
Yu, & Pickett, 2015). Also, landscape metrics as quantitative indices 
indicating the spatial heterogeneity of green space patches could fa‐
cilitate the analysis of land cover change effects through linking land‐
scape patterns with ecological functions (Qian et al., 2015; Ren et al., 
2013; Zhang et al., 2017). In the first 30 years of the 21st century, fast 
urban land cover increase is forecasted to mainly take place in cities 
of developing countries (Seto, Guneralp, & Hutyra, 2012). However, 
spatially explicit studies were intensively clustered in developed 
countries with increasing case studies of Chinese cities in recent sev‐
eral years (Liu & Li, 2012; Yao, Liu, Zhao, Long, & Wang, 2015). Many 
studies focus on urbanization‐induced variation in carbon storage 

using coarse land use types (e.g., forest, farmland, and urban land), 
and there is limited efforts elucidating the relationship between ur‐
banization intensity and carbon storage in urban green spaces. For ex‐
ample, estimation results from 219 sampling plots in Harbin revealed 
that the tree carbon storage density varied along the ring road‐based 
urban–rural gradients (Lv et al., 2016). Using Landsat TM images and 
inVEST model, Tao, Li, Wang, and Zhao (2015) found that the carbon 
density decreased with the increasing intensity of urban development 
with a 1.5% average annual decrease from 1986 to 2011 in the ur‐
banized areas of Changzhou, China. To value urban green spaces in 
mitigating climate change, a critical emerging research need is to char‐
acterize carbon storage variation in response to urbanization intensity 
and landscape structure change, and then understand the potential of 
appropriately managing urban green space landscape to enhance the 
biological carbon storage in densely urbanized Chinese cities.

China have experienced dramatic demographic urbanization and 
urban land expansion with the rapid economic growth during the 
past four decades (Sun & Zhao, 2018; Zhao et al., 2015). Beijing is 
one of the most representative cities with rapid urbanization and in‐
creasing energy consumption and carbon emissions in China. It is the 
second highest city of energy consumption in China, and the total 
CO2 emissions of Beijing in 2030 might be 0.43 times higher than 
that of 2005 (Feng, Chen, & Zhang, 2013). Urban area in Beijing has 
increased from 801 to 2,452 km2 over the past three decades, with 
an annual expansion rate of 3.7% (Wu, Zhao, Zhu, & Jiang, 2015). 
Trade‐offs between rapid urbanization and environmental protec‐
tion will be a major challenge for Beijing's sustainable development 
(Peng, Xie, Liu, & Ma, 2016). According to the carbon emission re‐
duction target of “the 13rd Five‐Year Plan of Beijing (2016–2020),” 
the CO2 emissions per unit of GDP in 2020 is to decrease by 20.5% 
compared with that in 2015 and the year 2020 is supposed to be the 
peak of total CO2 emissions, which is a big challenge for Beijing (Liu, 
Zong, Zhao, Chen, & Wang, 2014). In order to improve the ability of 
adaptation to climate change, the local government have launched 
tree planting programs such as the “Million Mu Trees Campaign” 
(one Mu equals to 1/15 ha), “Planting Where Possible” policy, and 
“Country Parks Circle Projects” to enhance the ecosystem services 
of carbon sequestration provided by urban green spaces (Jim & 
Chen, 2009). However, the ecological consequences of those tree 
planting policies are far from being understood (Yang, McBride, 
Zhou, & Sun, 2005). There is a lack of spatially explicit estimates of 
aboveground carbon storage over the city‐wide urbanized area of 
Beijing, let alone the other megacities of China are remains largely 
undocumented. Humans take staple responsibility for the future of 
urban ecosystems and distinct spatial patterns of carbon storage 
could be created through elaborately altering and designing the 
urban green spaces (Strohbach & Haase, 2012). Thus, there is an ur‐
gent need for research on carbon storage density along urbanization 
intensity gradient to understand how urban carbon stocks respond 
to urban expansion and help decision‐makers develop practical 
urban landscape management strategies to increase aboveground 
carbon stocks and achieve CO2 emissions reduction target in the 
capital of China.
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Specifically, the objectives of this study were to: (a) quantify the 
aboveground carbon storage by urban green spaces in urbanized 
areas; (b) map and investigate the spatial distribution and variation 
of carbon storage in response to urban development intensities; and 
(c) explore the relationship between the landscape structure (com‐
position and configuration) and aboveground carbon storage. These 
research efforts are urgently needed to investigate the urbanization 
effects on urban green space services and consequently benefit 
landscape design and management to achieve sustainable develop‐
ment for rapidly urbanizing cities of China.

2  | MATERIAL S AND METHODS

2.1 | Study area

Beijing is located between 39°28′N–41°25′N and 115°25′E–117°30′E, 
northwestern of the North China Plain, surrounded by Yanshan 
Mountain in the west, north, and northeast. As the capital city of 
China, Beijing contains 16 districts with an administrative area of 
approximate 16,807 km2 (Figure 1). Beijing has a predominantly 
warm temperate continental monsoon climate. The annual frost‐free 
period is about 186 days, the annual temperature of 10°C, and the 

average annual precipitation is 600 mm (Xie et al., 2015). Beijing has 
experienced rapid urban expansion during the past three decades 
and the urban area has increased from 801 to 2,452 km2 during 
1980–2010 (Wu et al., 2015), and its population increased from 8.72 
million in 1978 to 19.62 million in 2010 (BMSB, 2011). The central six 
districts (i.e., Chaoyang, Dongcheng, Fengtai, Haidian, Shijingshan, 
and Xicheng) have an area of 1,380 km2 (Figure 1b) and accommo‐
date 59.7% of the total permanent population of Beijing in 2010 
(Beijing Municipal Statistics Bureau, 2011). The most developed area 
of Beijing is the area within the 5th Ring Road where four ring roads 
(i.e., 2nd, 3rd, 4th, and 5th Ring Road) were built from the city center 
to the fringe in 1992, 1999, 2001, and 2003, respectively (Figure 1c). 
Most of the cropland distributed outside the 5th Ring Road.

The local government have made great efforts (e.g., “Planting 
Where Possible” policy) to increase the vegetation coverage in rap‐
idly urbanizing region since the ecosystem services provided by 
urban vegetation can significantly contribute to the well‐being of 
urban residents in Beijing (Qian et al., 2015). However, Beijing is one 
of the most representative cities in China, which are confronted with 
serious conflicts between rapid urbanization and ecosystem service 
maintenance (Peng et al., 2017). Therefore, we chose urban Beijing 
as the case area for spatially explicit research on the aboveground 

F I G U R E  1  The location of Beijing (a), administrative divisions of study area (b), and distribution of field survey points (c) [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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carbon storage of urban trees. Since this study mainly focuses on 
urban trees, the study area was restricted to the six central districts 
of Beijing. We finally excluded the areas higher than 100 m above 
sea level because the main part of it is a mountainous region such 
as the Fenghuangling and Badachu Scenic Resort in the Haidian and 
Shijingshan districts, with considerably different landscape feature 
from urbanized region.

2.2 | Field survey

The field survey was conducted between May and November in 
2014. The plot size was set as 900 m2. The shapes of the plots used 
in this study were adjusted according to the local condition of each 
plot due to the heterogeneous green space landscape in urban eco‐
system. Most of the surveyed plots were regular square shape while 
the shapes of those irregular plots were adjusted to guarantee the 
consistent survey area of 900 m2. A random sampling method was 
adopted. A total of 326 plots within the six central districts of Beijing 
were selected in this study (Figure 1c). One hundred and sixty‐five 
plots were located within the 5th Ring Road and 161 plots were in the 
suburban area of Beijing. Because within the 4th Ring Road, 30 × 30 
sized green spaces were mostly located on sensitive government 
agency or private managed neighbors where access was denied, we 
conducted vegetation survey mainly in urban parks (e.g., the Temple 
of Heaven Park, Beihai Park, and Yuyuantan Park). The central loca‐
tions of the plots were positioned by GPS (Garmin GPSmap 629sc). 
Due to the relatively small contribution to carbon storage from shrubs 
and herbs (Davies et al., 2011) in urban ecosystem, we mainly focused 
on the aboveground carbon storage estimation of urban trees. During 
the field survey, we collected the following information for trees: spe‐
cies, number of each species, diameter at breast height (1.3 m, DBH 
>5 cm), tree height, and health condition of each measured tree.

2.3 | Satellite image processing and urban 
vegetation classification

Cloud‐free SPOT 6 satellite images with a high spatial resolution of 
6 m and four spectral bands acquired on October 15, 2014 were 
used in this study to estimate aboveground carbon storage of urban 
green spaces. We then coordinated Digital Elevation Models (DEM) 
(downloaded from http://www.gdem.aster.ersdac.or.jp/search.jsp) 
to conduct geometric correction and orthorectification for SPOT 6 
images. Official definitions of the administrative area of districts in 
Beijing were used to cut the mosaic images using ArcGIS 10.2. The 
coordinate system of Albers Conical Equal Area was used for this 
study. In order to establish the relationship between aboveground 
carbon storage and vegetation index, we utilized the simplified 
Normalized Difference Vegetation Index (NDVI) thresholds method 
to obtain NDVI from satellite imagery. NDVI is calculated from the 
SPOT 6 images with the following equation:

where Band 1 and Band 2 correspond to SPOT 6 near‐infra‐
red spectral channel (0.760–0.890 μm) and red spectral channel 
(0.625–0.695 μm).

The land covers in this study were classified into four categories 
(i.e., vegetation, impervious surface, water body, and bare soil) with 
the object‐based image analysis (OBIA) approach. The SPOT 6 images 
acquired in October 15, 2014 explicitly showed the distribution of 
vegetative area in Beijing and thus can be used to effectively map 
urban green spaces (i.e., vegetated areas). Vegetation consisted of all 
vegetated areas, which referred to as green space. Impervious sur‐
face included transportation, industrial, commercial, and residential 
space. Water bodies were mainly lakes and rivers. Bare soil referred 
to lands under construction and non‐vegetative areas. In OBIA ap‐
proach, an image is first segmented into objects that are classified ac‐
cording to both spectral and spatial information, such as color, shape, 
size, texture, and other features (Myint, Gober, Brazel, Grossman‐
Clarke, & Weng, 2011). When using high spatial resolution images to 
quantify the spatial distribution of land covers in urban ecosystems, 
the object‐based image classification method is superior to traditional 
pixel‐based method (Qian et al., 2015). Specifically, we use eCogni‐
tion Developer 8.7 to segment the four‐band SPOT 6 images with 
spatial scale parameter of 30 to capture the high heterogeneity, and 
then, we classified those images with a membership function nearest 
neighbor classification method (Walsh et al., 2008). This study used 
the high spatial resolution images in Google Earth Pro to conduct ac‐
curacy assessment (Zhao et al., 2015). Also, 300 stratified random 
sampling points were created in Erdas Imagine 2015. The overall 
accuracy of classification was 90.7% and the accuracy of vegetation 
was 92.4%, which can meet the accuracy requirements of land cover 
change evaluation (Foody, 2002).

2.4 | Biomass calculation and carbon 
storage estimation

Biomass allometric growth equations from published literatures 
were used to estimate the dry‐weight biomass of each surveyed 
tree (Table 1). The biomass of an individual tree is typically calcu‐
lated based on either the DBH alone, or a combination of DBH and 
tree height. We chose equations derived geographically close to 
our study area (Liu & Li, 2012). We calculated the aboveground bio‐
mass by adding up the calculation results from biomass equations 
for stem, branch, and leaves or directly using equations referring 
to the total aboveground biomass. When no species‐specific allo‐
metric equation could be found, equations of species affiliated to 
the same genus or the same family were used. If no equations were 
found for a genus or a family, a generalized equation derived from Jo 
and McPherson (1995) and Jo (2002) was used. Finally, the individual 
tree biomass was converted to carbon by multiplying a factor of 0.5 
(Nowak & Crane, 2002). The mean carbon density for each plot was 
calculated using the following Equation (2):

(1)NDVI=
Band1−Band2

Band1+Band2

(2)CDj=

∑n

i=1
Di

Aj

http://www.gdem.aster.ersdac.or.jp/search.jsp
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where CDj is the average carbon storage density for the jth survey 
plot; Di is the carbon storage for the ith tree species of the plot; n is 
the tree species number; and Ajis the plot area for the jth plot which 
equals to 900 m2 in this study.

We paired NDVI data (Equation 1) with aboveground carbon 
measurements (Equation 2) at 326 sites to establish the relationship 
between the pixel carbon density and NDVI. Figure 2 showed that 
there existed a significant exponential relationship (p < 0.001) be‐
tween carbon density and NDVI:

We applied the Equation (3) to map the spatial pattern of the 
city‐wide carbon storage using ArcGIS 10.2 software. Since the 
maximum NDVI value is 0.6 from the surveyed spots in this study, 
estimates from NDVI values beyond 0.6 might not be reliable. The 
pixels with NDVI higher than 0.6 were excluded from the carbon 
storage estimation in this study.

In order to reveal the underestimation of biomass in urban areas 
from medium‐resolution images which have been found in some 
urban ecosystems (Davies, Dallimer, Edmondson, Leake, & Gaston, 
2013; Raciti et al., 2014), we not only used the SPOT 6 images to map 
the carbon storage patterns in high resolution, but also extracted 
the 30 m resolution NDVI data (August 19, 2014) from cloud‐free 
Landsat 8 Operational Land Imager (OLI) sensors to compare the 
SPOT quantification results with the coarser resolution estimates.

2.5 | Relationship between carbon storage and 
urban expansion

The administrative divisions of six districts (i.e., Chaoyang, 
Dongcheng, Fengtai, Haidian, Shijingshan, and Xicheng) were used 
to quantify the carbon stocks and compare differences in carbon 

density between old (i.e., Dongcheng and Xicheng) and younger (i.e., 
Chaoyang, Fengtai, Haidian, and Shijingshan) areas of the central re‐
gion of Beijing. In addition, we compared the carbon storage density 
of four regions between ring roads which may represent the urban–
rural gradients or urbanization of Beijing according to previous stud‐
ies (Huang, Su, Zhang, & Koh, 2010; Qian et al., 2015).

However, artificially designated borders of urban–rural gradi‐
ents as mentioned above could not display the critical landscape 
heterogeneity in urban ecosystem, and therefore, we also used the 
index of urban development intensity (UDI) based on land cover 
data to illustrate the urbanization level of the study area. The UDI 
data of Beijing was from published spatiotemporal patterns of 
urban expansion results of Sun et al. (2018), which was derived 
from 30 m resolution Landsat images. The spatial distribution dy‐
namics of urban expansion for Beijing from the late 1970s to 2015 
was mapped by dividing the urban land area into 1 × 1 km grid 
squares. The UDI was then calculated to analyze its relationship 
with the average carbon density which was divided using the same 
1 × 1 km grids:

where UDIi is the urban development intensity for spatial unit i, UAi 
represents the urban land area of spatial unit i, and TAi is the total 
area of the spatial unit i. The spatial unit was a 1 × 1 km grid in this 
study.

We then calculated the average UDI at a 1% interval and the cor‐
responding value of the 95th, 50th, and 5th quantile carbon density 
as well as the interquartile range to explore how spatial variation in 
UDI affects carbon stocks. Piecewise regression was used to iden‐
tify the thresholds of carbon density variation with UDI (Toms & 
Lesperance, 2003). Green spots with especially high carbon density 
were illustrated with examples of the false color composite of SPOT 
6 data. SPOT estimates were overlaid with the medium‐resolution 
estimates from Landsat data to make explicit comparison.

2.6 | Relationship between carbon storage and 
landscape structure

To explore the influence of landscape composition and compo‐
sition of green spaces on carbon density under different UDI levels, 
we calculated the landscape metrics of urban green space grids with 
the high (in the top 10%) and low (in the bottom 10%) carbon den‐
sity of each UDI bin (i.e., 0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 
30–35, 35–40, 40–45, 45–50, 50–55, and 55–60) and analyzed its 
relationship with carbon storage. Although landscape structure can 
be captured by a variety of landscape metrics, we should take the 
redundancy into account and select representative metrics (Li & Wu, 
2004). In this study, we explored the relationship between landscape 
structure (configuration and composition) and aboveground carbon 
storage from five aspects (i.e., diversity, area, shape, dispersion, and 
aggregation) by adopting six landscape metrics. The six metrics were: 

(3)CDj=1.3287×e
6.5621×NDVI

(4)UDIi=
UAi

TAi

×100

F I G U R E  2   Relationship between the aboveground carbon 
storage density (Mg C ha−1) and SPOT‐derived Normalized 
Difference Vegetation Index (NDVI) at the central six districts of 
Beijing [Colour figure can be viewed at wileyonlinelibrary.com]
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(1) percent cover of green spaces (PLAND); (2) Shannon's diversity 
index (SHDI); (3) mean patch area (AREA_MN); (4) mean value of 
shape index (SHAPE_MN); (5) mean Euclidian nearest‐neighbor dis‐
tance (ENN_MN); and (6) aggregation index (AI) (Table 2, McGarigal, 
Cushman, Neel, & Ene, 2002). PLAND and SHDI indicate the change 
in landscape composition which can respond to anthropogenic dis‐
turbance. Some studies showed that the proportion of green space 
patches might decrease where the intensity of urbanization became 
higher, with an increase in land cover diversity (Godwin, Chen, & 
Singh, 2015; Qian et al., 2015). On the other hand, the landscape 
configuration was measured using the remaining four metrics to re‐
flect the fragmentation degree and patch shape complexity of urban 
green spaces brought about by the rapid urbanization process of 
Beijing (Qian et al., 2015). These metrics were calculated for each 
1 × 1 km spatial unit based on the green space map using Fragstats 
4.2 with patch neighbors defined by the “8‐cell rule” (McGarigal et 
al., 2002). The spatial distributions of aboveground carbon density 
were quantified and mapped by ArcGIS 10.2 software. Pearson cor‐
relation coefficients (p < 0.05) were given to analyze the relationship 
between landscape structure and carbon storage density. Statistical 
analyses of the data were performed in R (R Development Core 
Team, 2013).

3  | RESULTS

3.1 | Field results

We measured 10,020 stems of 26 species. Top tree species sam‐
pled are Populus tomentosa (Carr.), Salix babylonica, and Sophora 
japonica (Linn.) which added up to represent 56% of the sampled 
trees. Other common species include Pinus tabuliformis (Carr.), 
Robinia pseudoacacia (L.), Sabina chinensis (L.) Ant., Ginkgo biloba 
(L.), and so on. The average DBH of all surveyed trees is 15.5 cm. 
Analyses of the field survey results showed that urban trees in 
Beijing city are dominant (80.8%) by small trees (DBH <20 cm) 
(Figure 3a). Large stems >20 cm in DBH, while uncommon, stored 
65.1% of the observed carbon storage (Figure 3b). Especially stems 
with DBH >40 cm contains 22.0% of the field‐surveyed carbon 
storage.

3.2 | Spatial distribution of aboveground 
carbon storage

The spatial distribution of the aboveground carbon storage was 
mapped from Landsat (Figure 4a) and SPOT 6 (Figure 4b) data. The 
aboveground carbon storage estimates from high‐resolution data 
(Figure 4b) showed that an estimated 956.3 Gg (1 Gg = 109 g) of 
carbon was stored by the aboveground vegetation of six districts 
of Beijing, and the carbon density of urban trees in the study area 
was 7.8 Mg C ha−1. The carbon storage of urban trees was highly het‐
erogeneous. The carbon storage of Dongcheng and Xicheng which 
are the most heavily urbanized area of Beijing were significantly 
(p < 0.05) lower than Chaoyang, Fengtai, and Haidian (Figure 5a). 
Haidian district had the highest carbon stocks in the central six dis‐
tricts of Beijing. Differences in carbon density were much smaller 
than the overall carbon stocks differences among each district 
(Figure 5a,c). The carbon stocks increased constantly from the inner 
2nd Ring Road to the outer 5th Ring Road (Figure 5d) with an abrupt 
increase in carbon stocks from the area between the 3rd and 4th 
Ring Road to the area between the 4th and 5th Ring Road (Figure 5c).

Comparatively, medium‐resolution (30 m) Landsat product 
(Figure 4a) showed different spatial patterns of aboveground carbon 
storage from the SPOT estimates. It is noticeable that medium‐res‐
olution estimates failed to reveal the carbon storage capacity of dis‐
persed small urban green spaces (marked by circle in Figure 4) that 
are mostly distributed in heavily urbanized area (i.e., region within 
the 5th Ring Road), and we found significant (p < 0.05) differences in 
the total stocks and carbon density variation among each urban dis‐
tricts of Beijing. Estimates of carbon stocks from the Landsat satel‐
lite images (Figure 6) showed a significant (p < 0.05) underestimation 
of urban vegetation's contribution, compared with SPOT product. 
Although the variation in carbon stocks and carbon density among 
each ring road remained similar, the total carbon stocks of Beijing 
were 582.8 Gg in the six central districts and 237.2 Gg in the region 
within the 5th Ring Road (Figure 6a,b), both of which are approxi‐
mately 60% of results from SPOT remote sensing data (Figure 5). In 
addition, TM product (Figure 6c) failed to illustrate the high carbon 
storage density of Haidian district and the Dongcheng and Xicheng 
estimates were only about half of the SPOT product (Figure 5c).

TA B L E  2   Landscape metrics (McGarigal et al., 2002) used in this study

Metric (unit) Abbreviation Description

Percent cover of green space (%) PLAND Proportional abundance of green space in the landscape

Shannon’s diversity index SHDI A measure of the diversity of patch types in a landscape that is determined by both the 
number of different patch types and the proportional distribution of area among patch 
types

Mean patch area (ha) AREA_MN Total patch area divided by the patch number

Mean patch shape index SHAPE_MN Mean value of shape index

Mean Euclidian nearest‐neighbor 
distance (m)

ENN_MN Mean distance to the nearest neighboring patch of green space based on the edge‐to‐edge 
distance

Aggregation index (%) AI Proportional neighboring patches of green space
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3.3 | Relationship between carbon storage and 
urban development intensity

Carbon density generally declined with increasing UDI for both SPOT 
and Landsat estimates in the study (Figure 7). Figure 8 further illus‐
trated the relationship between carbon storage and UDI at 1% interval. 
The average carbon density generally decreased with the increase in 
UDI. However, when UDI was less than 60%, the 95th quantile carbon 
density (Figure 8a) fluctuated greatly along the UDI, and large differ‐
ences presented between the 95th and 5th quantile carbon density 
for each UDI bin (Figure 8a,b). When UDI was larger than 60%, the 
interquartile range (IQR) of carbon density at each UDI interval sharply 

reduced (Figure 8d). It is also noticeable that all of the 95th, 50th, and 
5th quantile carbon density decreased consistently and sharply with 
the increase in UDI. For estimates from Landsat data, although the 
general decreasing patterns of the 95th, 50th, and 5th quantile carbon 
density with increasing UDI was similar, its 95th quantile values (black 
hollow point in Figure 8a) was lower than that of SPOT estimates and 
the IQR for Landsat (Figure 8e) narrowed down sharply when UDI was 
higher than 45%. Figure 9a showed that areas with UDI higher than 
60% were mainly distributed within the 5th Ring Road of Beijing and 
the grids with high carbon storage density distributed in large urban 
parks such as Beijing Olympic Forest Park (Figure 9b) and Temple of 
Heaven Park (Figure 9c).

F I G U R E  4  Spatial distribution of aboveground carbons storage estimated from Landsat 8 (a) and SPOT 6 (b) satellite images at the central 
six districts of Beijing excluding the areas above 100 m with examples (c and d) for spatially explicit illustration [Colour figure can be viewed 
at wileyonlinelibrary.com]

(a) (b)

(c) (d)

F I G U R E  3  The distribution of frequency (a) and proportion of carbon stocks (b) in surveyed urban trees classified by DBH [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.4 | Relationship between carbon storage and 
landscape structure of urban green spaces

Scatter plots showed that variation in carbon was strongly corre‐
lated with landscape structure, but the significance (p < 0.05) of 
the relationship between carbon storage density and landscape 
metrics (Figure 10) changed greatly with UDI. The significant re‐
lationship was relatively stable for PLAND which showed positive 

correlation with carbon storage density where the UDI was higher 
than 25%. When the UDI level was higher than 35%, areas with 
high AI tended to have high density of carbon storage. As for land‐
scape metrics of describing shape complexity and patch size, the 
correlation relationship was discontinuous and only significant at 
UDI of 25%–30% and 45%–50% for SHAPE_MN, and significant 
at UDI of 35%–40% and 45%–50% for AREA_MN. It is notewor‐
thy that the carbon storage density decreased with the increase in 

F I G U R E  5   Spatial distribution of 
carbon storage of each districts and areas 
between two ring roads (a and b) with 
their density (c and d) of urban green 
spaces in Beijing, using SPOT 6 satellite 
images (The same letters (e.g., a and a, 
ab) indicate no significant differences, 
and different letters (e.g., a and b, or b 
and c) indicate significant differences 
(p < 0.05) [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  6   Spatial distribution of 
aboveground carbon storage of each 
districts and areas between two ring roads 
(a and b) with its density (c and d) of urban 
green spaces in Beijing, using Landsat 
8 satellite images (The same letters 
(e.g., a and a, ab) indicate no significant 
differences, and different letters (e.g., 
a and b, or b and c) indicate significant 
differences (p < 0.05)

www.wileyonlinelibrary.com
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ENN_MN which indicated the distance to the nearest neighboring 
patch of urban green space.

4  | DISCUSSION

Rapid urban expansion has the potential to result in significant im‐
pacts on vegetation carbon storage, with high population densities 
and continually growing urban areas, especially in cities of develop‐
ing countries (Seto et al., 2012). Using Beijing, the capital of China, 
as a case study, our results provide important insights into the land‐
scape drivers of aboveground carbon stocks by urban green spaces 
across urbanization gradients. Conscious planning and design of 
urban green space landscape aimed to maintain and maximize car‐
bon stores could be incorporated into urban management in order to 
mitigate future climate change.

4.1 | Comparison of aboveground carbon 
storage and carbon density in six central districts of 
Beijing with other studies

The mean aboveground carbon storage density of urban green 
spaces in six central districts (i.e., Chaoyang, Dongcheng, Fengtai, 
Haidian, Shijingshan, and Xicheng) of Beijing is 7.8 Mg C ha−1. The av‐
erage value of region within the 4th Ring Road is 5.2 Mg C ha−1 lower 
than the 7.4 Mg C ha−1 from the previous study of Beijing in 2002 
by Yang et al. (2005). It might be attributed to the astonishing urban 
expansion during the past decade of Beijing as the capital of China 
and the core city of the Jing‐Jin‐Jin Urban Agglomeration, resulting 
in increased proportion of impervious surface and excessive distur‐
bance to urban green space landscape such as replacing prior patches 

with sparse and young trees (Qian et al., 2015; Sun & Zhao, 2018; 
Wu et al., 2015). Therefore, our results highlight the overall negative 
urbanization effects on aboveground carbon storage in highly urban‐
ized areas of mega cities, despite the possible enhancement of urban 
environments on urban vegetation growth (Zhao, Liu, & Zhou, 2016).

The spatial variation in aboveground carbon density that we 
estimated across the central six districts of Beijing emphasized the 
importance of quantifying carbon stocks using fine‐resolution data. 
Fragmented urban development often leads to small green patches 
and isolated trees, and therefore, fine‐spatial resolution remote 
sensing data used in this study is particularly beneficial to illustrate 
the spatial variation in carbon storage (Chen et al., 2017; Mitchell et 
al., 2018). Due to the mixed‐pixel problem, each pixel is represented 
by the predominant land cover, and thus, maps from medium‐reso‐
lution remote sensing data such as Landsat could not capture the 
finely grained green spaces in urbanized areas (Davies et al., 2013; 
Raciti et al., 2014). Analyses in our study revealed that estimates 
from Landsat data in the urban ecosystems lost the important in‐
formation of large spatial variability of carbon density. An analysis in 
Leicester, UK, found that moving from 10 to 250 m resolution land 
cover data meant a 76% underestimate of aboveground carbons 
stores (Davies et al., 2013). Comparative analyses from SPOT and 
Landsat (Figures 5 and 6) in this study revealed a 39% underestimate 
of carbon storage from 6 to 30 m resolution remote sensing data. 
But using fine‐resolution data to estimate carbon storage presents 
its own challenges including intensive computation efforts, available 
spatial extent and temporal frequency (Raciti et al., 2014). We thus 
underlined the trade‐offs in estimating carbon storage while higher 
resolution data for urban areas are essential to illustrate the poten‐
tial of urban green spaces in mitigating climate change.

Compared with other studies including the estimates from 
mountainous region adjacent to urbanized areas, like Shenyang with 
33.2 Mg C ha−1 (Liu & Li, 2012), Hangzhou with 30.25 Mg C ha−1 
(Zhao et a., 2010), and Xiamen with 20.8 Mg C ha−1 (Ren, Wei, & Wei, 
2011), the relatively low density of city‐wide estimated carbon stor‐
age of Beijing might be related to inconsistent definition of urban veg‐
etation (Mitchell et al., 2018) and climate background (e.g., subtropical 
monsoon climate for Hangzhou). But the result was much higher 
than the city with the same temperate monsoon climate‐Xi'an with 
2.77 Mg C ha−1 which was also estimated for its heavily urbanized 
areas using field survey data and NDVI derived from satellite images 
(Yao et al., 2015). Although both of Beijing and Xi'an have long history 
of urban development, the arid climate of Xi'an might impact the car‐
bon storage services of urban vegetation. Therefore, to facilitate the 
local level authorities make effective urban management strategy to 
mitigate future climate change, spatially explicit intracity analyses on 
the landscape drivers are more needed than coarse regional study.

4.2 | Landscape structure drivers of aboveground 
carbon storage in urban green spaces

The average carbon density of the United States was estimated to 
be 76.9 Mg C ha−1 by Nowak et al. (2013) using urban tree field data 

F I G U R E  7   Scatter plot of pixel‐based carbon density estimates 
from SPOT (solid green dot) and Landsat satellite data (hollow black 
dot) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  8  Relationship between the aboveground carbon storage and urban development intensity from SPOT 6 (solid points) and 
Landsat 8 satellite (black hollow points) data overlaid with the layout by 95th quantile (a), 5th quantile (b), mean (c) values of carbon density 
(Mg C ha−1) along the urban development intensity (%) of the central six districts of Beijing; the interquartile range (IQR) for SPOT (d) and 
Landsat (e) estimates were compared to explore the threshold of the relationship [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  9   Spatial distribution of 
the aboveground carbon storage (a) 
displayed by Quantile Classification 
standard which assigned the same number 
of pixels in ascending order of carbon 
value to the 0–20th, 20–40th, 40–60th, 
60–80th, and 80–100th quantile bins 
corresponding to the five classes of very 
low, low, moderate, high, and very high, 
respectively) and examples (b and c) for 
high carbon storage density of the study 
area from SPOT 6 product [Colour figure 
can be viewed at wileyonlinelibrary.com]

(b)(a)

(c)
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from 28 cities. Chen (2015) collected empirical data from published 
literature and found that the average carbon density of vegetation 
of the urban green infrastructure in 35 major Chinese cities was 
only 21.34 Mg C ha−1. The low vegetation carbon density of Chinese 
cities on one hand can be attributed to the relative young vegeta‐
tion stands (Chen, 2015), and on the other hand might be related 
to the landscape structure modification by the fast urban expan‐
sion process. During the past four decades, China's urbanization is 
characterized by significant increase in impervious surface, which 
has profoundly changed the local land cover types (Liu et al., 2005; 
Wang et al., 2012). Rapid urban expansion has significantly affected 
the important ecosystem services of mitigating and adapting to cli‐
mate change provided by urban vegetation (Tao et al., 2015; Zhou, 
Wang, & Cadenasso, 2017). Our results showed that the correlation 
relationship between aboveground carbon storage and landscape 
metrics varied dramatically with different urbanization intensity. 
This study revealed that in high urbanization intensity, aboveground 
carbon storage was positively correlated with vegetation cover 
proportion, land cover diversity and negatively correlated with the 
aggregation degree of green space patches, which corroborates 
the previous findings (Godwin et al., 2015; Zhang et al., 2017). The 
reason why aggregated green space patches showed high carbon 
storage capacity might be related to the less edge effects on vegeta‐
tion structure, which has been found in natural forest ecosystems 
(Harper et al., 2005). However, those previous studies failed to de‐
tect the threshold value of urbanization intensity with high variation 
in carbon density. Figure 8d shows that when the urbanization in‐
tensity (impervious surface proportion) increases to 60%, there was 
much less difference of carbon density among green space patches, 
and thus we suggest that the potential of carbon storage increase 
could be very limited when the urban development reaches cer‐
tain intensity threshold. While Zhang et al. (2017) highlighted the 
important role of landscape planning in urban forest management 
especially in heavy urbanization areas, our results emphasized the 
marginal effects of those landscape planning in increasing carbon 
storage services.

Nevertheless, these relationships were much weaker in areas 
with relatively lower UDI (Figure 10). None of the selected landscape 
metrics unveiled a consistent significant correlation with carbon den‐
sity when UDI was less than 30%, but an increase number of land‐
scape metrics were related with carbon density when UDI increased. 
Most of those low UDI areas are rural parts of Haidian, Fengtai, and 
Chaoyang districts where rapid urban expansion happened in the re‐
cent decade (Figure 1c). Since relative large extent of those areas 
were dominated by forests, other local biotic factors (e.g., vegetation 
age species and vertical structure), and environmental factors (e.g., 
soil moisture) might also have important impacts on aboveground 
carbon storage (Mitchell et al., 2018). Rapid urban expansion has 
brought about profound modification of land cover types to the sub‐
urban of the central region of Beijing and has shaped dispersed vege‐
tation landscape of those areas (Qian et al., 2015). Therefore, in order 
to increase aboveground carbon storage, landscape design measures 
in the future should be paid much attention, such as improving the 

proportion of green spaces at landscape level and the aggregation 
degree of green spaces. It should be noted that we used the range 
of carbon storage variability along the UDI gradient as an indicator 
for carbon sequestration potential, which should be valid if young 
and old forests/trees are well mixed together along the UDI gradient 
as the range represents possible carbon storage differences resulted 
from forest age, tree density, among other factors. Of course, this 
concept might not work if there are few old forests/trees in the city, 
a situation not likely in Beijing, the ancient capital of China.

4.3 | Implications for urban design and planning to 
mitigate future climate change

Urban green spaces in cities provide a variety of ecosystem ser‐
vices to city‐dwellers and the carbon storage estimation results in 
this study have addressed the role that urban green spaces can play 
in the mitigating climate change. Efforts of conscious planning and 
design of urban green spaces might significantly foster the urban 
resilience to climate change (Leichenko, 2011). Previous tree plant‐
ing strategy in cities always emphasize on preserving the existing 
tree covers and planting where possible, while we suggest that much 
priority could be given to areas exclusive of rapid urban expansion 
and practicable for landscape configuration optimization in order to 
maintain and maximize carbon storage.

Rapid urban expansion, on one hand brought about profound 
modification of land cover types, shaping a relative young urban 
tree structure of Beijing (Figure 3), but on the other hand, many 
afforestation movements such as the “National Forest City” award 
(designated by the Forestry Administration of China) stimulated 
the demand for distinct design of landscape such as parks, gardens 

F I G U R E  1 0   Relationship between variation in aboveground 
carbon density (by the 90th and the 10th quantile values) and 
landscape metrics (AI, ENN_MN, AREA_MN, SHAPE_MN, SHDI, 
and PLAND) from SPOT 6 data of each urban development 
intensity bin at a 5% interval of UDI from 0% to 60% (the star 
indicates relationship significances (p < 0.05) and the color bar 
(right) indicates their correlation coefficients) [Colour figure can be 
viewed at wileyonlinelibrary.com]
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or street greenbelt, which could greatly increase the carbon stor‐
age of urban ecosystems. The landscape structure of those newly 
built urban green spaces, however, might vary with its urban de‐
velopment background, especially in Beijing and other densely 
established cities of China (Qian et al., 2015). Tree planting pol‐
icies (e.g., “Planting Where Possible” policy and “Country Parks 
Circle Projects”) might bring increase of new urban green spaces 
in highly urbanized areas in the forms of residential yards, commu‐
nity gardens or street trees and large green spaces such as coun‐
try parks in suburban and exurban (Gong, Mao, Qi, & Xu, 2015). 
Consequently, the local landscape structure would be significantly 
changed. Therefore, urbanization effect should be taken into ac‐
count when making urban greening policy to enhance the ecosys‐
tem service of carbon storage provided by urban green spaces. 
In addition, many studies showed that cluster or less fragmented 
landscape configuration of urban vegetation could lower land sur‐
face temperature (Fan, Myint, & Zheng, 2015; Peng et al., 2016). 
Therefore, changes in landscape structure are likely to affect the 
urban heat island mitigation and aboveground carbon storage by 
urban vegetation simultaneously, and other potential co‐bene‐
fits between various services provided by urban green spaces 
(Demuzere et al., 2014). Spatially explicit landscape assessment 
maps could combine physical and social features of urban ecosys‐
tems to facilitate multifunctional evaluation of where and what 
ecosystem services are provided by urban green spaces (Mitchell 
et al., 2018). The combination of these ecosystem services might 
make the use of urban green spaces a preferential climate miti‐
gation strategy (Demuzere et al., 2014; Gill, Handley, Ennos, & 
Pauleit, 2007). According to the study (Zhao et al., 2015) from 32 
major cities of China, the compactness index of Hangzhou, Jinan, 
Shanghai, Shenzhen, and Tianjin increased significantly during 
the past several decades, which suggest an increasingly compact 
urban expansion pattern. Given that many cities of China have 
implement tree planting programs to increase ecosystem services 
provided by urban green spaces, the results from this study might 
not only be potentially important to Beijing, but also other heavily 
urbanized cities in China. Rapid urban land growth directly leads 
to the diminishing of ecosystem services provision, and the high 
proportion of construction exerts significantly negative impact 
on ecosystem services (Peng et al., 2017). We thus emphasized 
the urgent need for these cities to identify the thresholds cou‐
pled in human‐natural systems and target specific sites that may 
enhance the provision of urban green spaces services (Demuzere 
et al., 2014).

4.4 | Limitations and suggested future research

This study has several limitations. First, some allometric equations 
adopted in this study are derived from natural forest ecosystems 
due to the difficulty of manipulating destructive whole‐tree cut‐
ting experiment in urban ecosystems, and thus, there might be 
overestimate of the aboveground biomass in urban green spaces 
where management activities (e.g., mowing and pruning) are 

necessary to maintain the landscape esthetic (Muratet, Pellegrini, 
Dufour, Arrif, & Chiron, 2015). In addition, while this study has 
explored the relationship between aboveground vegetation car‐
bon storage and landscape structure of urban green spaces, other 
variables not considered in this study will also influence urban 
vegetation carbon storages. The variables include soil tempera‐
ture and texture, vegetation age structure, and microclimate con‐
ditions such as air temperature and pollution. Fine‐scale three 
dimensional structure of vegetation provided by Light Detection 
And Ranging (LiDAR) data in recent years has been proved to be 
of great importance in high‐resolution mapping of the spatial 
distribution of aboveground carbon stores in urban landscape of 
extreme high heterogeneity (Godwin et al., 2015; Mitchell et al., 
2018; Raciti et al., 2014). A comprehensive analysis of these fac‐
tors could better quantify the carbon stocks and identify the driv‐
ers of vegetation carbon storage variation in urban areas (Hutyra 
et al., 2011). It is also noteworthy that as an important component 
of urban ecosystem carbon storage, soil organic carbon is often 
significantly disturbed by urbanization and should be taken into 
account in landscape design and planning (Edmondson, Davies, 
McCormack, Gaston, & Leake, 2014). Only one city in one climatic 
zone type was studied, and it is of great interest to conduct in‐
tercity comparative study for future research to explore the re‐
lationship between landscape structure and urban aboveground 
carbon stocks.
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