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Abstract

Scaling is central to ecology and Earth system sciences. However, the importance of scale (i.e. resolution and extent)

for understanding carbon dynamics across scales is poorly understood and quantified. We simulated carbon dynam-

ics under a wide range of combinations of resolution (nine spatial resolutions of 250 m, 500 m, 1 km, 2 km, 5 km,

10 km, 20 km, 50 km, and 100 km) and extent (57 geospatial extents ranging from 108 to 1 247 034 km2) in the south-

eastern United States to explore the existence of scale dependence of the simulated regional carbon balance. Results

clearly show the existence of a critical threshold resolution for estimating carbon sequestration within a given extent

and an error limit. Furthermore, an invariant power law scaling relationship was found between the critical resolu-

tion and the spatial extent as the critical resolution is proportional to An (n is a constant, and A is the extent). Scale

criticality and the power law relationship might be driven by the power law probability distributions of land surface

and ecological quantities including disturbances at landscape to regional scales. The current overwhelming practices

without considering scale criticality might have largely contributed to difficulties in balancing carbon budgets at

regional and global scales.
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Introduction

Understanding the carbon cycle at various scales can

provide critical information for policy and management

actions to mitigate climate change (Fang et al., 2001;

Goodale et al., 2002; Houghton, 2007; Parry et al., 2007).

Carbon budgets at regional to global scales still have

many discrepancies shown by diverse modeling and

synthesis efforts (Le Qu�er�e et al., 2009; Pan et al., 2011;

Huntzinger et al., 2012). Although the importance of

scale dependence in estimating CO2 exchange between

the land and the atmosphere has been recognized in a

few studies (Turner et al., 2000; Rastetter et al., 2003;

Zhao et al., 2010), it is still poorly understood and sel-

dom explicitly considered in the design of investiga-

tions. This may have contributed to the observed

carbon budget discrepancies.

Scaling is central to Earth system sciences in general

and models are the principal vehicle for scaling

(Enquist et al., 1999; Rastetter et al., 2003; Peters et al.,

2004; Urban, 2005). Many models provide different

results when applied at different scales (Costanza &

Maxwell, 1994; Turner et al., 2000; Zhang et al., 2002;

Zhao et al., 2010). Given the inherent heterogeneity of

landscapes at various spatial scales, estimates of carbon

sources and sinks are scale-dependent; that is, they

may vary with the spatial scope of the analysis

(geospatial extent) and with the spatial resolution (grain

size) of land cover change, disturbances, and other

information. However, the importance of scale (i.e. res-

olution and extent) for understanding carbon dynamics

across scales is poorly understood and quantified.

Most carbon simulations to date have been per-

formed at a given spatial resolution without document-

ing a scientific justification for the choice of scale. It is

unknown if a specific resolution is sufficient or fine

enough to reach a particular uncertainty limit. Indeed,

many of the model simulations performed so far, still

fit the observation made more than 30 years ago by

Watson that the choice of a given scale is ‘a private act

of faith’ (Watson, 1978). We do see a limited cautious

effort to identify the consequences of not considering

the impacts of scale (Turner et al., 2000; Zhao et al.,

2010). Nevertheless, fundamental questions have to be

answered to justify or unjustify the overwhelming prac-

tices of ‘leap of faith’ in ecological scaling in general,

and in carbon cycle scaling in particular.

In this study, we examined the scale dependence of

estimated carbon sequestration in the southeastern

United States from 1992 to 2050 using the General

Ensemble biogeochemical Modeling System (GEMS).

The objectives of the study are to address the following

two fundamental science questions: (i) is there a critical

spatial resolution threshold for estimating terrestrial

carbon sequestration?; and (ii) if this critical threshold

exists, does it vary with the size of geospatial extent? In
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addition, we intend to investigate the effectiveness of

two scaling approaches (i.e. nearest neighbor and

majority) for resampling land cover and land use

change information across scales, and then evaluate the

impacts of scaling approach on estimating carbon

dynamics.

Materials and methods

Study area

The study area covers 1 247 034 km2 of the southeastern

United States, including all or portions of 13 US states

(Fig. 1). Forest covers about 60% of the region. Other com-

mon land uses and land covers include agricultural land

(25%) and urban areas (5%). Ecosystems are constantly

affected by human activities and natural processes. More

than half of the forests are industrial forests (loblolly pine

and other Southern pine species) in rapid cycling between

clear-cutting and regenerating forest. Land cover and dis-

turbances are projected to change dramatically in the

region in the future due to population growth, urban

expansion, and demand for wood products (Sohl & Sayler,

2008).

Introduction of GEMS

The General Ensemble biogeochemical Modeling System

(GEMS) (Liu et al., 2004), developed to upscale carbon stocks

and fluxes from sites to regions, was used to simulate the

impacts of spatial resolution of input data on regional carbon

balance. GEMS relies on a site-scale biogeochemical model,

the Erosion-Deposition-Carbon Model (EDCM) (Liu et al.,

2003), to simulate carbon dynamics at the site scale. The spa-

tial deployment of the site-scale model in GEMS is based on

the spatial and temporal joint frequency distribution (JFD) of

major driving variables (e.g., land use and land cover change,

climate, soils, disturbances, and management). GEMS maxi-

mally uses the finest information contained in some data

layers (land cover and land use change database in this study,

for example) and other coarser-scale information scaled down

to the finest resolution through representation of uncertainty.

A more detailed description of the model can be found in Liu

et al. (2004) and Liu (2009).

Land cover and land use change (LCLUC) databases

Consistent, high-quality, and spatially explicit LCLUC

databases at 250 m 9 250 m resolution from 1992 to 2050

were developed using the FOREcasting SCEnarios of future

Fig. 1 Locations, shapes, and sizes of the 57 subregions or spatial extents used in this study. Each of these extents covered an area rang-

ing from 108 to 1 247 034 km2. The use of a large range of locations, shapes, and sizes of extents was to increase the generality of

results. Colors and patterns were used to differentiate partially overlapped extents, if necessary.
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land cover (FORE-SCE) model (Sohl & Sayler, 2008), which

relies heavily on USGS Land Cover Trends data (Loveland

et al., 2002) for model parameterization. The spatial resolution

of the original LCLUC dataset was 250 m, and the land cover

maps were resampled to grain sizes of 500 m, 1 km, 2 km,

5 km, 10 km, 20 km, 50 km, and 100 km.

The land cover maps generated from FORE-SCE provided

one single general class for all croplands. To downscale the

general cropland into crop species to support biogeochemical

modeling, statistical information about crop composition and

cropping practices (e.g., rotation probabilities) at the state

level was derived from the National Resources Inventory

(NRI) database, developed by the Natural Resources Conser-

vation Service, US Department of Agriculture (http://www.

nrcs.usda.gov/technical/NRI/). Once a pixel was prescribed

as a cropland in 1992, its crop species was assigned using a

Monte Carlo procedure with the state-level relative frequency

of a crop as its probability of being assigned to the pixel. The

crop species in subsequent years were derived using a crop-

rotation-probability-based Monte Carlo procedure.

Other data layers

Climate data were from the Parameter-elevation Regressions

on Independent Slopes Model (PRISM) group (1992–2007) and

the World Climate Research Programme’s (WCRP’s) Coupled

Model Intercomparison Project phase 3 (CMIP3) A1B scenario

(2008–2050). These data were first downscaled using the

ordinary Kriging procedure with the spherical model embed-

ded in ArcGIS to 250 m resolution.

Initial soil properties were based on the State Soil Geo-

graphic (STATSGO) Database. Soil properties used included

soil texture (sand, silt, and clay fractions), bulk density,

organic matter content, wilting point, and field capacity. A soil

map unit (MUID) in STATSGO, represented by one or more

polygons, contains one or multiple soil components each with

a coverage fraction. The locations of the soil components

within the polygons are unknown. The area-weighted average

of all soil components within each STATSGO polygon were

used as the representative value of a given soil property (e.g.,

bulk density, etc.) of the polygon. After calculating area-

weighted averages of the above-mentioned soil variables for

all the STATSGO polygons, GIS grids were generated from

the polygon coverages to raster grids at 250 m resolution. A

250 m resolution raster map with continuous values showing

soil drainage conditions from excessively well-drained to very

poorly drained were indicated by the Compound Topographic

Wetness Index (http://edna.usgs.gov/Edna/datalayers/cti.

asp). Point observations of total atmospheric nitrogen deposi-

tion from wet and dry sources were obtained from the

National Atmospheric Deposition Program (http://nadp.sws.

uiuc.edu/) and used to generate GIS grids at 250 m using the

ArcGIS ordinary Kriging procedure.

In contrast to the upscaling (from finer to coarser resolu-

tion) described above, a downscaling approach was used to

scale information from coarser to finer resolutions. Lacking

spatially explicit information on initial forest age and biomass

carbon stock, statewide forest age structure (i.e. age frequency

distribution) and average age-biomass relationship by forest

type (i.e. deciduous forest, evergreen forest, mixed forest, and

woody wetland) were derived from the U.S. Forest Service’s

Forest Inventory and Analysis (FIA) National Program

(http://fia.fs.fed.us/tools-data/default.asp). If a pixel was a

forest in 1992 (the start year of model simulation) according to

the land cover map, its age was determined using a Monte

Carlo procedure with the statewide age frequency distribution

as the probability for picking an age. Once age of the forest

was determined, its corresponding initial biomass was

obtained from the age-biomass relationship.

Scaling or resampling of input data

We understood that different resampling approaches may

give different results, depending on their effectiveness on

retaining finer-scale information as the spatial scale becomes

coarser. In this study, we used the nearest neighbor and

majority resampling approaches to scale LCLUC information

from 250 m to coarser resolutions; both approaches have been

used extensively in land cover research and mapping (Cain

et al., 1997). The nearest neighbor algorithm assigns the land

cover class of the center cell to the whole lower resolution cell

in the target window, and majority resampling assigns the

majority of the cells to that lower resolution cell.

All other data layers other than LCLUC data were resam-

pled from 250 m to coarser resolution grids using a simple

arithmetic averaging procedure in ArcGIS (ESRI, 2009). The

averaging procedure for scaling continuous variables is a very

common practice (Potter et al., 1993; Miller & White, 1998;

Schwalm et al., 2010; Hayes et al., 2012).

Methods for investigating the existence of scale criticality

Is there a critical spatial resolution for estimating terrestrial

carbon sequestration? To answer this question, we ran the

GEMS model at nine spatial resolutions (250 m, 500 m, 1 km,

2 km, 5 km, 10 km, 20 km, 50 km, and 100 km), and then

examined the differences in carbon sequestration among these

resolutions. Carbon sequestration for year x was calculated as

the difference of ecosystem carbon stock (including carbon

accumulated in live biomass, forest floor, and soil) between x

and x-1, which was equal to net ecosystem carbon balance

(NECB) using the carbon cycle concepts and terminology of

Chapin et al. (2006). The fate of harvested material (wood)

was not included in NECB. Positive values represent uptake,

and negative values indicate carbon loss from the biome.

To quantify the impact of scale of modeling on estimating

carbon sequestration, we used the carbon sequestration esti-

mates at the finest resolution (i.e. 250 m) as the base for com-

parison. We calculated the absolute value of the relative

change in carbon sequestration as a percentage (di) at any

given resolution i as follows:

di ¼ jCi � C250mj
jC250mj � 100

where, Ci is the mean, standard deviation (STD), or coefficient

of variation (CV) of the annual mean NECB rates at spatial

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2240–2251
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resolution i (i = 250 m, 500 m, 1 km, 2 km, 5 km, 10 km,

20 km, 50 km, and 100 km). The spatial resolution at which

carbon sequestration characteristics (e.g., mean and variability

measures) demonstrated significant changes from the base

would be considered as the critical (i.e. threshold) spatial reso-

lution. In this study, we investigated the critical resolutions

for a given error limit (i.e. di = 5%, 10%, and 20%) of the mean,

STD, and CV of the regional NECB values at various spatial

extents. Figure 2 illustrates the detection of the critical resolu-

tion required to constrain errors of the mean NECB, STD, or

CV within 10% for the state of Alabama as an example. Any

bar falls in the green crossed area (the width of the crossed

bar indicates �10% of the mean NECB, its STD, and CV at

250 m resolution) would indicate that the mean, STD, or CV is

not significantly different from their corresponding value at

250 m.

Methods for investigating relationship between critical
resolution and extent

To further investigate whether the influence of spatial resolu-

tion of input data on carbon sequestration varies with the

spatial scope of the analysis (geospatial extent), we repeated

the analysis over 57 geospatial extents ranging from 108 to

1 247 034 km2 (Fig. 1). The effect of extent was investigated

by comparing among many model simulations at different

extents.

To investigate if threshold resolution is related to LCLUC

and landscape features, the Pearson correlation coefficients

between the threshold resolution and land cover composition

(e.g., fractions of forest, cropland, etc.), and landscape distur-

bances (e.g., forest harvesting, mining, and urbanization) and

other landscape metrics (e.g., diversity, evenness, and abun-

dance of land cover classes) (Shannon et al., 1949) across all 57

extents were calculated. In addition, stepwise regression (criteria:

probability-of-F-to-enter ≤0.05, and probability-of-F-to-remove

≥0.10) was also performed using SPSS (SPSS, 2004).

Results

Scale criticality

Spatial resolution has a significant impact on the spatial

pattern of net ecosystem carbon balance (NECB) in the

region (Fig. 3). Some of the details of regional mean

NECB were gradually lost as the spatial resolution

decreased with increasing pixel size, and some of the

spatial features became unrecognizable at coarse reso-

lutions. In parallel with these cross-scale changes in

spatial patterns, the corresponding overall NECB char-

acteristics have changed as well (Fig. 4). The modeled

regional total annual NECB abruptly increased from

74 Tg C yr�1 (1 Tg = 1012 g) at 2 km resolution to

79 Tg C yr�1 at 5 km resolution, and the NECB became

irregularly different from those at finer resolutions

when the resolution became coarser than 2 km. The

overall trends of the regional mean NECB at various

spatial resolutions are similar, with an average NECB

fluctuating around 60 g C m�2 yr�1 from 1992 to 2050

and a decreasing capacity of carbon sequestration over

time (Fig. 5a). The magnitude and the general trend

agreed well with previous studies in the region (Liu

et al., 2004; Binford et al., 2006; Zhao et al., 2010). How-

ever, the temporal variation in NECB was strongly

affected by the spatial resolution. For example, some of

the annual swings observed at 50 km and 100 km

resolutions (e.g., NECB in 2024 and 2034 at 100 km)

were much larger than those estimated at finer

(a) (b) (c)

Fig. 2 Identification of the critical spatial resolution required to constrain errors of the mean (a), standard deviation (b), and coefficient

of variation (c) of the net ecosystem carbon balance (NECB) within 10% of those at the 250 m for a given spatial extent (the State of Ala-

bama). The width of the crossed bar indicates �10% of the mean NECB, its STD, and CV at 250 m resolution, respectively. Any black

bar that does not fall into the crossed green area indicates a value more than 10% different from the result for 250 m resolution. It shows

that the critical resolution for the mean, standard deviation, and coefficient of variation was 50 km, 5 km, and 5 km, respectively.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2240–2251
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resolutions (Fig. 5a), and the coefficient of variation of

regional total NECB increased from about 18% at reso-

lutions finer than 10 km to 83% at 100 km resolution

(Fig. 4). While Fig. 5a effectively shows the general

temporal trends and the interannual variability in

NECB at various resolutions, it was difficult to see the

differences among resolutions. To show the differences

more clearly, the time-integrated or cumulative NECB

deviations relative to 250 m resolution from 1992 to

2050 are shown in Fig. 5b. The cumulative difference

trajectories for resolutions finer than 5 km were rela-

tively steady and the total deviation was smaller than

40 g C m�2 during the 58 years period. The total devia-

tion increased to more than 100 g C m�2 when the

resolution was between 5 km and 20 km inclusive. The

cumulative difference trajectories became irregular

when the resolution was coarser than 20 km. Results

from the majority resampling approach also

clearly show the criticality of scale on the estimated

NECB at various spatial resolutions in the region

(Fig. 5c and d). Figure 5 shows that (i) time-integrated

NECB difference or deviation, relative to those at

250 m, increased with coarsening spatial resolution;

Fig. 3 Spatial distributions of net ecosystem carbon balance (NECB) from 1992 to 2050 in the southeastern United States estimated at

various spatial resolutions using the nearest neighbor resampling approach for land cover scaling. The white areas on the maps indi-

cate resampled land cover classes for pixels with impervious surfaces (e.g., in urban areas) or water bodies which were not simulated.

Fig. 4 Regional total net ecosystem carbon balance (NECB) and

its coefficient of variation (CV) from 1992 to 2050 in the southeast-

ern United States estimated at various spatial resolutions using

the nearest neighbor resampling approach for land cover scaling.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2240–2251
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and (ii) the deviations suggested the coexistence of

over- and under-estimation of NECB using the nearest

neighbor resampling, and systematic overestimation of

NECB using the majority resampling.

To further demonstrate the differences, the regional

mean annual NECB values simulated at various resolu-

tions were compared with those simulated at 250 m

year by year (Fig. 6a–h). The regional average NECB

values simulated at coarser resolutions and those at

250 m agreed well at resolutions finer than 10 km and

did not agree well at resolutions equal or coarser than

10 km. A systematic bias toward overestimation is

apparent at 5 km (Fig. 6d), and the 10 km plot had the

first different slope than the 1 : 1 line (Fig. 6e). All these

observations clearly suggest the importance of spatial

resolution for simulating carbon dynamics.

Further observations can be made on the relative

differences in NECB produced by the two resampling

approaches (see Fig. 7). First, the 5th and 95th

percentiles of the relative NECB differences were

�56.8% and 80.9%, and �64.7% and 126.2% for the

nearest neighbor and majority approach, respectively,

which strongly signifies the importance of scale. Sec-

ond, the median relative difference produced by the

majority was 24.2%, indicating strong overall positive

biases of NECB as the resolution coarsened. In contrast,

the median difference was only �0.1% by the nearest

neighbor approach. Third, most of the relative differ-

ences with the nearest neighbor approach were in a

narrow range with �5.8% and 5.5% as the 25th and

75th percentiles, respectively. On the other hand, most

of the differences with the majority approach were

more widely distributed and positively biased as

the 25th and 75th percentiles were 1.2% and 62.8%,

respectively.

Resolution–extent scaling relationship

Examining the relationship between the critical resolu-

tion (y) and the extent (x) from the nearest neighbor

approach (Fig. 8a–c), an invariant power law scaling

relationship can be found for each error limit:

(a) (b)

(c) (d)

Fig. 5 Comparison of the temporal changes of simulated annual net ecosystem carbon balance (NECB) using input data with spatial

resolution varying from 250 m to 100 km in the southeastern United States. To more clearly show the differences in NECB across scales,

the time-integrated or cumulative deviation (or difference) of NECB at one scale relative to 250 m was plotted as well. Panel a: temporal

changes of NECB with the nearest neighbor resampling approach for land cover scaling. Panel b: cumulative deviation of annual NECB

relative to 250 m with the nearest neighbor resampling approach for land cover scaling. Panel c: temporal changes of NECB with the

majority resampling approach for land cover scaling. Panel d: cumulative deviation of annual NECB relative to 250 m with the majority

resampling approach for land cover scaling.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2240–2251
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ysðxÞ ¼ ksx
as þ e

where, s is a given error limit, a is the scaling expo-

nent of the power law scaling relationship, k is a

proportionality constant, and e is an error term repre-

senting uncertainty in the estimated values of the criti-

cal resolution. Fig. 8a–c gives quantitative guidance on

how to use the extent of a study area to select an

appropriate resolution for running model simulations

and delivering results within a certain error limit. The

power laws signify the existence of scaling invariance

between the threshold resolution and the extent

because scaling the extent x by a constant factor c sim-

ply causes the original power law relation to be multi-

plied by the constant cas :

ysðcxÞ ¼ ksðcxÞas ¼ ksc
asxas

In contrast to the results from the nearest neighbor

approach, no distinct scaling relationship between criti-

cal resolution and extent for the regional mean NECB

was emerged from the majority approach (Fig. 8d–f).

The critical resolution was independent of the spatial

extent as critical resolutions formed no significant

trend along the gradient of >4 orders of magnitude

(Fig. 8d).

Discussion

Carbon sequestration varies with extent, and many

efforts have been made to estimate its variability (Liu

et al., 2011). For a given extent, carbon sequestration

(not its estimate) is independent of resolution used for

estimation as one extent can only have one single car-

bon cycle budget. This study was not intended to study

how carbon sequestration (not its estimate) varies with

scales. Instead, it investigated the impacts of varying

resolution and extent on estimated regional carbon

dynamics. All input variables were organized by scale

first before feeding the GEMS. The observed results are

therefore a function of the scaling methods or resam-

pling of input variables, and the noted differences

among scales are a result of the combination of inputs.

The results clearly show the possible consequences

of using various resolutions without any justification

(‘leap of faith’) when estimating regional carbon

dynamics.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 6 Comparison of net ecosystem carbon balance (NECB) values in the southeastern United States estimated at various spatial reso-

lutions with those at 250 m from 1992 to 2050 using the nearest neighbor resampling approach for land cover scaling. Each point repre-

sents a pair of NECB estimates at two resolutions for a given year. The straight line in each plot is the reference 1 : 1 line.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2240–2251
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Results, regardless of resampling approach, unequiv-

ocally showed the criticality of scale on the estimated

NECB at various spatial resolutions in the region. In

addition, the majority approach is not effective in scal-

ing up localized, fine-scale events (e.g., forest harvest-

ing seldom exceeds 4 km2) that have significant

impacts on carbon dynamics (Liu et al., 2011). Forest

harvesting showed the highest Pearson correlation coef-

ficient with threshold resolution under the majority

sampling (Fig. 9b, R = �0.32, P = 0.008), and it was the

only significant variable in the stepwise regression

analysis. Both results suggested the importance of for-

est harvesting activities but the negative correlation

coefficient indicated the ineffectiveness and devastating

deficiency of the majority approach as more extensive

harvests were associated with finer resolutions. For an

effective scaling approach, the critical resolution should

vary with extent but not with disturbances as we see

from the nearest neighbor approach (Fig. 9a). The sys-

tematic overestimation of NECB using the majority

approach might also indicate that this approach was

not adequate for resampling because it filtered the non-

majority disturbance events that have significant

impacts on NECB.

The nonresponsiveness of the critical resolution to

the change in extent using the majority approach has

two important implications. First, it does not fit with

our conventional wisdom that a larger pixel size could

be used for a larger extent for model simulations. Sec-

ond, it presents a huge challenge for quantifying carbon

dynamics over large areas because it demands a very

fine pixel size (usually finer than 1 km) and the ‘brute

force’ approach has to be adopted in model simula-

tions.

The power law relationship has been found in vari-

ous studies related with phenomenological pattern

scaling (Delcourt & Delcourt, 1988; Turner et al., 1989;

Falk et al., 2007; White et al., 2008). Most effort has

been on investigating the effect of changing resolu-

tion, less on the effect of changing extent, and rarely

with a focus on both. Process scaling, which transfers

information across scales and generates new under-

standings that are often not obvious, is less under-

stood than pattern scaling (Tischendorf, 2001; Fortin

et al., 2003). To our knowledge, no power law rela-

tionship has been reported on scaling latent processes

across various resolutions and extents. It remains a

great challenge to identify guiding principles for

process scaling (Rastetter et al., 2003; Urban, 2005; Liu

et al., 2011).

Three important observations can be made from the

invariant power law scaling relationship in Fig. 8a–c.
First, all the scaling exponents (a) in Fig. 8a–c are posi-

tive, suggesting that the critical resolutions for the

mean NECB, its standard deviation, and coefficient of

variation (CV) can be relaxed (i.e. with increasing grain

or pixel size) as the spatial extent expands. This agrees

well with perception and general practices as most glo-

bal model simulations were carried out at 0.5 degree

resolution (or about 55 km in latitudinal distance) and

(a) (b)

Fig. 7 Impacts of resolution on the simulated NECB, expressed as the difference relative to 250 m resolution, at various extents using

two upscaling approaches. The shaded area shows the relative frequency distribution of the NECB differences.
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landscape applications at meter-scale. Nevertheless, for

the first time, the invariant scaling law found in this

study provides a concrete quantitative relationship that

could be used to guide the selection of resolution for a

given extent and error limit.

Second, the a values for the mean NECB ranged from

0.37 to 0.47, higher than that for the CV (varying from

0.32 to 0.33), while the proportionality constant k of the

mean was larger than its counterpart of CV at the same

resolution. This suggests that it is easier to contain the

error of the mean NECB than its counterpart CV. For

example, to contain the relative error within 10% for a

region of 10 000 km2, the minimum spatial resolution

would be about 5 km for the mean NECB, but the

minimum spatial resolution for the CV would have to

be less than 2 km.

(a) (b) (c)

(d) (e) (f)

Fig. 8 Threshold resolution or maximum pixel length-size required to constrain errors of the mean NECB (a and d), its standard devia-

tion (b and e), and coefficient of variation (c and f) within 5%, 10%, and 20% of those at 250 m for various spatial extents using the near-

est neighbor (NN) and majority resampling approaches.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2240–2251
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Third, the scaling exponents for various error limits

were very similar (Fig. 8a–c). This equivalence of

power laws with the scaling exponent might suggest a

profound origin in the dynamic processes that generate

the power law relationship as often seen in physics and

biology (Enquist et al., 1999; Brown & West, 2000; Milne

et al., 2002; White et al., 2008). The underlying mecha-

nisms that lead to the emergence of the power laws

found in this study are not clear. Our current hypothe-

sis is that the demonstration of a power law relation in

the extent-resolution relationship might be related to

the power law distribution of various disturbances and

climate variability that exert strong impacts on carbon

dynamics. Landscape composition and patterns change

when resolution or grain size and extent are changed

(Wiens, 1989). Ecological systems can be seen as nested,

discontinuous hierarchies of patches that differ in size,

shape, and successional stage at particular scales (Kot-

liar & Wiens, 1990; Holling, 1992; Wheatley & Johnson,

2009), and disturbances are believed to be the common

structuring forces for the nested hierarchies (Pickett &

White, 1985). A number of studies have shown that the

probability distributions of a wide variety of land sur-

face and ecological quantities including disturbances at

landscape to regional scales follow a power law rela-

tionship (Pascual & Guichard, 2005; Fisher et al., 2008).

As the extent increases with a fixed grain size, so does

the probability of finding rare ecosystem types,

increased fragmentation, and previously unencoun-

tered disturbances (Wiens, 1989; Fisher et al., 2008; Frat-

errigo & Rusak, 2008). Similar observations can also be

made with an increasing resolution within a given

extent. The invariant scaling relationship between reso-

lution and extent found in this study might suggest that

the loss of some functional groups at the landscape or

local scales caused by the loss of spatial resolution or

grain size may be compensated by the expansion of the

extent, which provides chances for the functional types

that were lost during the coarsening process to reap-

pear. Our finding supports the hypothesis that self-

organization and bottom-up emergence of structure is a

key cause for the existence of scaling invariance in a

complex system (Manson, 2008).

Most regional and global model simulations have

probably committed one of two errors. First, the resolu-

tion for model simulations might not have been fine

enough (i.e. below the critical resolution), which can

generate unexpected and biased results. Respecting the

scope of a model and the scale of the underlying driv-

ing processes is especially important in landscape-scale

or large-area extrapolations. Second, the resolution

might be too fine, which causes the problem of ‘over-

kill’. It seems that ‘overkill’ might not be a problem as

it can generate results at higher resolution than needed

and therefore can be applied to address issues related

with smaller extents. This might be true when the pro-

cesses are not scale-dependent. Otherwise, too fine a

resolution might have similar effects in generating erro-

neous or misleading results (Costanza & Maxwell,

1994).

Our results clearly showed the criticality of scale in

biogeochemical modeling. At the same time, we believe

(a)

(b)

Fig. 9 Relationship among threshold resolution, spatial extent,

and harvested forest area percentage for the nearest neighbor

(a) and majority (b) upscaling approaches. The increase in

threshold resolution with extent indicates the effectiveness of

the nearest neighbor approach in upscaling fine-scale land cover

and land use change (LCLUC) information. In contrast, the nar-

row range of threshold resolutions over a wide range of extents

suggests the fine-scale LCLUC could not be scaled up using the

majority approach.
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additional research should be conducted in the future

to address the generality of the scaling relationships

found in this study and the underlying processes that

define the scaling relationships. Detailed studies should

also be carried out to investigate the effectiveness of

various scaling methods. For example, why a power

law relationship is seen with one resampling method

but not with the other? In this study, we believe this

was due to the majority resampling method not being

effective in capturing the fine-scale disturbances as

resolution coarsened. We recognize though this might

be a partial or proximate reason and additional

research is needed, as scaling involves uncertainty and

other ecosystem features and processes we did not

include here. For example, the scaling of crop informa-

tion using agricultural census data and Monte Carlo

procedures might contain large uncertainty especially

at the pixel level. The effects of area-averaging the soil

variables (e.g., wilting point and field capacity in poly-

gons) in the lower coastal plain areas of the study could

be a significant contributor to the variance observed. A

step-wise evaluation of the impacts of accuracy and

scale of climate data could be performed to compare

the scaled climate data with observations first before

examining the effects on output (Heinsch et al., 2006).

Scale effects have long been studied in landscape to

regional ecology and Earth system sciences. Many pre-

vious studies have focused on the effects of changing

grain size rather than on the effects of changing extent.

Quantitative understanding of the scaling effects for

both resolution and extent has largely been lacking.

Although carbon cycle scientists are well aware of the

fundamental impacts of differing scales, scaling rela-

tions are yet to be explored, understood, quantified,

and implemented in practice. This might be a critical

missing piece in reconciling disparate estimates of the

global carbon budget.
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