
ARTICLE

Received 23 Jul 2013 | Accepted 2 Jun 2014 | Published 26 Jun 2014

Differentiating moss from higher plants is critical
in studying the carbon cycle of the boreal biome
Wenping Yuan1,2,*, Shuguang Liu3,*, Wenjie Dong1,*, Shunlin Liang4,5, Shuqing Zhao6, Jingming Chen7,

Wenfang Xu1, Xianglan Li4, Alan Barr8, T. Andrew Black9, Wende Yan10, Mike L. Goulden11, Liisa Kulmala12,

Anders Lindroth13, Hank A. Margolis14, Yojiro Matsuura15, Eddy Moors16, Michiel van der Molen17,

Takeshi Ohta18, Kim Pilegaard19, Andrej Varlagin20 & Timo Vesala21

The satellite-derived normalized difference vegetation index (NDVI), which is used for

estimating gross primary production (GPP), often includes contributions from both mosses and

vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-

third of the GPP that vascular plants can because of its much lower photosynthetic capacity.

Here, based on eddy covariance measurements, we show that the difference in photosynthetic

capacity between these two plant functional types has never been explicitly included when

estimating regional GPP in the boreal region, resulting in a substantial overestimation.

The magnitude of this overestimation could have important implications regarding a change

from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated

with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in

order to adequately assess the role of the boreal region in the global carbon cycle.
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T
he boreal biome accounts for 7% of global plant biomass
and 50% of the global belowground organic carbon pool1,2.
A recent study suggests that boreal forests in the northern

high latitudes have sequestered about 0.5 Pg C per year since
1990, which represents a significant portion of the estimated
B1.0 Pg C per year global net forest sink3. Moreover, climatic
changes associated with increasing atmospheric CO2 may be
greatest at high latitudes4, and these changes may have important
ramifications for the boreal biome, which may in turn influence
the rate of regional and global climatic changes5. Therefore,
understanding and quantifying the spatial and temporal changes
of carbon fluxes over the boreal biome is a high priority.

Vegetation gross primary production (GPP) is the largest
terrestrial carbon flux and one of the major components
controlling land–atmosphere CO2 exchange. A small error in
simulating vegetation production can substantially alter the
magnitude of the estimated global carbon balance6. Previous
studies showed wide and inconclusive results regarding vegetation
production over the high-latitude boreal biome. Globally, a
comparison of 15 models showed the largest model differences in
the boreal region (that is, boreal woodlands and boreal forests)7.
Model estimates of GPP for boreal North America varied between
2.6 and 11.6 Pg C per year, a larger range than that of temperate
North America8. Estimates of net primary production (NPP) in
Canada’s boreal forest also showed a large uncertainty, varying
from 140 to 444 g C m� 2 per year from three studies9–11.

Independently or as part of integrated ecosystem models, the
satellite-based light use efficiency (LUE) approach has been used
to estimate GPP and NPP at various spatial and temporal scales
(see Methods). A recent study showed that an LUE model (the
EC-LUE model) substantially overestimates vegetation primary
production at young stands because it neglects the impacts of
mosses12. Mosses often dominate the ground cover and
contribute substantially to the satellite signals from young
stands13. On the other hand, mosses with low LUE are
fundamentally different from vascular plants with respect to

vegetation production14. However, almost all satellite-based
models do not explicitly consider the impact of disturbance
regimes on vegetation composition of the northern ecosystems,
which may cause errors in the application of models using
remotely sensed data for the boreal biome.

High-quality GPP estimates (using the semi-empirical flux-
partitioning algorithm) from the global network of eddy
covariance (EC) flux towers make it possible to test the adequacy
of algorithms for estimating GPP over large areas. In this study,
we test the performance of three LUE models for predicting GPP
(EC-LUE, MODIS-GPP and CASA)12,15,16 at 26 EC flux towers
in the boreal regions of North America, Europe and Asia
(Supplementary Table 1; Supplementary Note 1), and quantify
the relative contribution of different vegetation compositions to
ecosystem GPP. The results show that three LUE models
overestimate GPP at most sites, especially in younger stands. By
separating the LUE and the relative contributions of mosses and
vascular plants to the satellite signal using age information, the
revised EC-LUE model successfully predicts GPP at all sites.
Our regional results show that GPP has been substantially
overestimated for the Canada boreal biome by the three LUE
models that do not consider the impacts of moss. These results
highlight the need to account for the impacts of moss on GPP
across the boreal biome in models of terrestrial carbon dynamics.

Results
Overestimated GPP over the boreal biome. EC-LUE, MODIS-
GPP and CASA explained about 68, 42 and 43% of the variation,
respectively, of site-averaged GPP over their study periods across
all sites (Supplementary Fig. 1a,c,d; see Methods). The relative
predictive errors (RPEs, see Methods) from the three models
decreased with stand age, and prediction errors approached
zero for forests older than 50 years (Fig. 1a,c,d). All three
models overestimated GPP at young forest sites. For example, in
forests younger than 50 years, averaged RPE of the EC-LUE,
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Figure 1 | The RPE of LUE models versus stand age. (a) The correlation relationship between stand age and RPE of EC-LUE, (b) EC-LUE-2p, (c) MODIS-

GPP and (d) CASA models at all sites. Numbers within the graphs are site IDs (Supplementary Table 1).
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MODIS-GPP and CASA models were 58, 61 and 67%, respec-
tively (Fig. 1a,c,d). However, the three models offered accurate
predictions for the old forest sites where the RPE was lower than
30% (Fig. 1a,c,d).

Differentiation of moss from vascular plants. We hypothesize
that the overestimation of GPP, especially at young stands, was
caused by the presence of moss and the lack of distinction
between moss and higher plants in the satellite-derived normal-
ized difference vegetation index (NDVI) data. Moss, one of the
major groups of bryophytes, is a ubiquitous and dominant
component of ground-level vegetation in the boreal biome. Moss
is typically among the first ground layer species to become
established after disturbance17. For example, at a study site in
Interior Alaska, 70% of the surface was covered by moss, and
only 30% of the surface was covered by grasses and deciduous
shrubs 3 years after fire18.

Boreal forests are relatively open due to narrow tree crowns
and low stand density of dominant trees; as a result, moss can
substantially contribute to measured satellite signals19. This
contribution from moss can be illustrated using a
chronosequence of seven adjacent sites recovering from fire
disturbances20. Figure 2 shows the leaf area index (LAI) of the

vascular plants measured from the ground at these sites and their
NDVI values derived from satellite data. NDVI includes the
greenness contribution from both vascular plants and moss (see
Methods). Measured LAI of vascular plants from the ground
varied from 0.3 to 7.4 m2 m� 2 across these sites (Fig. 2a). In
contrast, the NDVI values varied around 0.7, showing small
differences across these seven sites (Fig. 2b), suggesting all these
forests had a closed canopy21. The low LAI values in the young
stands clearly indicated that their canopies were open. The
discrepancy between field-based LAI measurements of vascular
plants and satellite-derived NDVI suggests substantial
contribution of moss to the satellite signal NDVI in the young
stands.

Field experiments indicate that the LUE of moss is only about
10 to 50% of that of vascular plants22. To our knowledge, the
lower photosynthetic capacity of moss has never been explicitly
considered in any of the previous efforts in estimating GPP in the
boreal biome. The importance of treating moss and vascular
plants separately in estimating GPP can be demonstrated at site
and regional scales using a modified EC-LUE model. We revised
the EC-LUE model to explicitly include two contributions to
ecosystem GPP: one from moss and the other from vascular
plants (referred to as the EC-LUE-2p model hereafter). Intrinsic
potential LUE values were specified for moss and vascular plants.
In addition, we used K_NDVI (see Methods) to represent the
fractional contribution of moss to the NDVI signal at the
ecosystem level. K_NDVI, the only undetermined parameter of
the EC-LUE-2p model, was inverted at the 26 flux tower sites
against GPP estimates. Results show that after splitting the
EC-LUE model into two parts, the GPP estimates were improved
at the 26 flux tower locations and the mean absolute RPE
decreased from 32 to 11% across these sites (Supplementary
Figs 1, 2, 3 and 4). We found that the contribution of moss to the
satellite greenness signal (K_NDVI) was large in newly disturbed
young forests, but the signal decreased exponentially with forest
age (Fig. 3).

Independent field measurements of moss abundance also
support the conclusion that the contribution of moss to the
satellite greenness signal (K_NDVI) decreases as forests age. A
previous study along a wildfire chronosequence found that the
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bryophyte total cover was inversely correlated with forest age
with higher cover in young stands23. In Alaskan forests, moss
cover showed a unimodal distribution with time since fire
occurrence, peaking 30–70 years post fire at the permafrost sites
and 5–15 years at the permafrost-free sites24. The moss
contribution to the NDVI signal is similar to the reported
trend, which provides independent validation of the K_NDVI
derived from this study. Moreover, the partitioning of GPP
between moss and vascular plants by the EC-LUE-2p model
matched well with the observations at seven fire chronosequence
sites20 (Supplementary Fig. 5).

Impacts on regional GPP estimations. Using the improved EC-
LUE-2p model (see Methods), the relationship between the
contribution of moss to the NDVI signal and forest age derived
from 26 flux tower locations (Fig. 3), and the spatial distribution
map of forest age25, we estimated GPP to be 2.44 Pg C per year
for the Canadian boreal biome (Fig. 4c; see Methods). Moreover,
we quantified the uncertainty of regional GPP estimations
resulting from the relationship between stand age and
K_NDVI, shown in Fig. 3 (see Methods). The EC-LUE-2p GPP
estimates varied from 2.15 to 2.67 Pg C per year over the entire
study area for a 95% confidence limit (Fig. 4a,b).

In comparison, EC-LUE, MODIS-GPP and CASA generated
estimates of 3.30, 3.69 and 3.98 Pg C per year, respectively,
for the same region when moss contribution was not explicitly
considered. This finding represents an overestimation of 34–63%
of the result from the EC-LUE-2p model (Fig. 4d). The EC-LUE-
2p-simulated average GPP was 388 g C m� 2 per year; even
the maximum estimation of GPP was 425 g C m� 2 per year,
substantially lower than the 601 g C m� 2 per year recently
obtained over the global boreal biome by diagnostic models26.

This result clearly demonstrates the importance of moss,
disturbance and forest development stage in estimating
vegetation production in the boreal biome.

Discussion
GPP is a critical component of the carbon cycle because it
signifies carbon uptake by ecosystems. GPP estimates have been
directly or indirectly used to evaluate regional carbon budgets27.
For example, GPP maps were used to provide prior information
for atmospheric inversion experiments28, and studies have shown
inverse estimates of CO2 fluxes in boreal Asia to be very sensitive
to these prior estimates29. Unfortunately, spatial patterns of the
contributions from moss and/or vascular plants to satellite signals
have never been separately mapped and used in any of the
previous efforts to estimate regional GPP. Consequently, current
estimates of regional GPP are likely much higher than reality, as
the photosynthetic capacity of moss is implicitly and artificially
elevated to the same level as that of vascular plants.

The northern latitude boreal biome is generally considered to
be acting as a considerable sink for atmospheric CO2 based on the
results from both ‘top-down’ and ‘bottom-up’ approaches30.
However, the precise role that the northern high-latitude
region plays in the global carbon budget is not well understood
because of model uncertainties31. For example, a study based on a
nested inverse modelling system indicates Canada’s sink to be
large (0.34±0.14 Pg C per year)28. However, ecosystem modelling
and inventory-based analysis found Canada’s forest to be a
weak sink of 0.05–0.07 Pg C per year11,25. Regional carbon
balance strongly depends on the accuracy of estimated GPP. An
overestimation of regional GPP, as we have found in this study,
has important ramifications for the carbon cycle in the boreal
region.
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Although we only examined LUE models in this study, the
conclusion is applicable to GPP models based on enzyme kinetics.
A recent study reported large differences in enzyme kinetics
between moss and vascular plants32. Moreover, the satellite-based
LAI was used to drive physiological models. For example, GPP
simulations from the Breathing Earth System Simulator, which
integrates the MODIS LAI product with the enzyme kinetics
model to estimate GPP, were most sensitive to LAI33. However,
these physiological models did not differentiate the different
contributions of moss and higher plants to satellite signal and
ecosystem GPP. Therefore, this study highlights the importance
of incorporating distinct structural and functional properties of
ecosystems into regional modelling frameworks.

The implication of the results from this study to the total
carbon budget of the boreal biome is important but quantitatively
unknown as carbon sinks and sources are determined by both
GPP and respiration. Given that plant autotrophic respiration
(Ra) is proportional to GPP (about half)34 for both moss and
vascular plants35, previous Ra estimates are likely proportionally
overestimated. However, Ra overestimates could not offset all
GPP overestimates as the proportionality is about half, and the
remaining half would result in overestimates of NPP (GPP minus
Ra). The impacts of failing to account for the presence of moss on
heterotrophic respiration are difficult to evaluate because
heterotrophic respiration is affected by many processes,
including NPP allocation among moss and higher plants and
mortality; we do not yet have a model that comprehensively
represents all these processes mechanistically. Nevertheless, some
rough estimation can illustrate the consequence of GPP
overestimates on the regional carbon budget. Assuming that the
overestimated NPP is half of the overestimated GPP and is either
completely returned to the atmosphere via heterotrophic
respiration (low impact of GPP overestimation) or entirely
accumulated in terrestrial ecosystems (high impact of GPP
overestimation), the net impact on net carbon gain would range
from 0 to 0.43 (EC-LUE), 0 to 0.62 (MODIS-GPP) and 0 to
0.77 Pg C per year (CASA) according to the GPP differences
between EC-LUE-2p and these models. It is not likely that all
overestimated NPP using the conventional approaches would be
respired via heterotrophic respiration or completely retained by
the ecosystems; the correct answer probably falls in the middle. If
these considerations were incorporated in previous carbon sink
estimates25,28, Canadian forests could be a source rather than a
sink. In summary, the impacts of failing to differentiate the
contributions of mosses and higher plants to the carbon cycle are
substantial. Future research on the impact of moss on the carbon
cycle, especially ecosystem respiration, is needed to reduce the
uncertainty in estimating the regional carbon sink strength.

Our results suggest that characterizing plant composition and
percent cover of bryophytes in the boreal biome is critical for
quantifying the impacts of land surface dynamics on climate
change because the boreal biome is the second largest biome in
the world36. Bryophytes play an important role in ecosystem
structure and function of boreal forests and have a profound
impact on terrestrial carbon, water and nutrient budgets37. The
importance of bryophytes and the lack of capability in mapping
their dynamics thus highlight the need to develop remote sensing
approaches to quantify the composition and percent cover of
bryophytes in the region13. Even though MODIS data are
gridded, the sensor flies over a given point on the ground at
different angles over time. Therefore, in theory, the contribution
of K_NDVI should be different depending on the off-nadir view
angle. This would change the MODIS observation for each orbit
but it might also be a chance to estimate the fractional
contribution of mosses across the landscape. Several studies
found that satellite observations from multiple view angles

significantly improve the assessment of vertical vegetation
structure38,39. At the same time, off-nadir view angles minimize
distorting background/understory effects and provide new
information for separating the spectral contribution of the
forest floor (or understory layer) from the tree canopy layer40.
Moreover, field manipulative experiments are needed to actually
measure the contribution of bryophytes to satellite signals at the
local scale, which will improve our understanding of the function
of bryophytes.

Our current understanding of moss photosynthetic capability
is still very limited. For example, the value of 0.64 g C m� 2 MJ� 1

absorbed photosynthetically active radiation (APAR) for potential
LUE of moss used in this study was 30% that of vascular plants
according to currently available studies14. A previous study
showed that the net CO2 uptake rates of mosses were only about
10–40% those of vascular plants on a dry mass basis41. Similarly,
the LUE of moss in Alaskan tundra was about 18% that of the
overstory canopy42. Apparently, more comparative studies on
photosynthetic capacity and LUE of mosses and vascular plants
are needed to further improve our understanding of the role of
mosses in regional and global carbon cycles. In addition, we
lumped and did not differentiate the vascular plants (for example,
shrubs and grasses) covering the ground of boreal forests from
the trees in this study, as no systematic differences in
photosynthetic capacity or LUE have been reported between
these life forms. Nevertheless, understanding the importance
of the contribution of ground vascular plants to the satellite
signals in these forests versus their productivity and their
contribution to ecosystem GPP can shed useful light to
ecosystem carbon dynamics as the composition of these life
forms changes over time18.

In this study, we found substantial impacts of disturbances on
ecosystem structure and composition and their subsequent
impacts on ecosystem productivity in boreal ecosystems.
Disturbances alter forest structure and vegetation composition
and cause higher bryophyte cover in young stands23. Increasing
temperature in the northern high latitudes has resulted in well-
documented increases in frequency, intensity, seasonality and
extent of various disturbances such as fire and insect outbreaks,
and these trends are likely to continue with warming and
drying43. The impacts of stand-replacing disturbances such as fire
and harvesting might have been underestimated in the past,
which can alter the forest age structure and contribution of moss
to ecosystem GPP. It is imperative to incorporate these structural
and functional changes of ecosystems into regional modelling
frameworks to adequately assess the impacts of disturbances on
the carbon cycle and global climate.

Methods
LUE model. Predicting the GPP of terrestrial ecosystems has been a major chal-
lenge in quantifying the global carbon cycle44. Among predictive methods, the LUE
model may have the greatest potential to adequately address the spatial and
temporal dynamics of GPP because of its theoretical basis and practicality45. The
LUE model is built on two fundamental assumptions46: (1) the ecosystem GPP is
directly related to APAR through LUE, where LUE is defined as the amount
of carbon produced per unit of APAR, and (2) realized LUE may be reduced below
its theoretical potential value by environmental stresses, such as low temperatures
or water shortages47. The general form of the LUE model is

GPP ¼ fPAR�PAR�emax�f ð1Þ

where fPAR is the fraction of PAR absorbed by the vegetation canopy, PAR is
the incident photosynthetically active radiation (MJ m� 2) per time period (for
example, day or month), emax is the potential LUE (g C m� 2 MJ� 1 APAR) without
environmental stress, f is a scalar varying from 0 to 1 that represents the
reduction of potential LUE under limiting environmental conditions, and the
multiplication of emax and f is realized LUE.

Numerous studies have developed various LUE models such as the CASA
model16. In this study, three LUE models including MODIS-GPP, CASA and EC-
LUE, which have been widely validated and applied at global scales, were selected
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to examine the impact of moss on estimating vegetation GPP in the boreal forest
biome.

MODIS-GPP product. The MODIS-GPP algorithm is an LUE-based model, with
inputs from MODIS LAI/fPAR (MOD15A2), land cover and biome-specific cli-
matological data sources from the National Aeronautics and Space Administration
(NASA) Data Assimilation Office15. LUE is calculated based on two factors: the
biome-specific potential LUE emax, a multiplier that reduces the LUE when cold
temperatures limit plant function, and a second multiplier that reduces the
potential LUE when vapour pressure deficit (VPD) is high enough to inhibit
photosynthesis. It is assumed that soil water deficit covaries with VPD and that
VPD will account for drought stress. The GPP algorithm was tested with flux data
sets from a range of biomes48.

CASA model. CASA is a LUE model that uses satellite measurements to estimate
vegetation NPP16. The model directly translates APAR into NPP based on LUE,
which is a product of optimal efficiency and the regulatory functions of
environmental factors (for example, temperature and water stress). The CASA
model directly simulates NPP, and an approximate conversion of 0.47 between
NPP and GPP is used in this study34.

EC-LUE model. The EC-LUE model is driven by only four variables: NDVI, PAR,
air temperature (T, �C) and the evaporative fraction49. GPP was computed from
fPAR, PAR and downregulators. The downregulators represent plant stresses due
to suboptimal temperature (Ts) and water (Ws).

GPP ¼ fPAR�PAR�emax�MinðTs;WsÞ ð2Þ

fPAR ¼ 1:24�NDVI� 0:168 ð3Þ

Ts ¼
ðT �TminÞ�ðT �TmaxÞ

ððT �TminÞ�ðT �TmaxÞ� ðT �ToptÞ2Þ
ð4Þ

Ws ¼
LE
Rn

ð5Þ

where Min denotes the minimum values of Ts and Ws, and the impacts of
temperature and moisture on LUE were assumed to follow Liebig’s Law (that is,
LUE is only affected by the most limiting factor at any given time). Tmin, Tmax and
Topt are the minimum, maximum and optimum air temperatures (�C) for
photosynthetic activity, respectively. If air temperature falls below Tmin or increases
beyond Tmax, Ts is set to zero. In this study, Tmin and Tmax were set to 0 and 40 �C,
respectively, whereas Topt was set to the mean temperature during the growing
season. LE is the latent heat (MJ m� 2), and MODIS-ET was the product used in
this study. Rn is the net radiation (MJ m� 2).

EC-LUE-2p model. To investigate the impact of moss on estimations of ecosystem
GPP, we developed the EC-LUE-2p model by separating vegetation production into
two components based on the EC-LUE model: vascular (GPPv) and moss (GPPm):

GPP ¼ GPPv þGPPm ð6Þ

GPPv ¼ fPAR�PARv�ð1�K NDVIÞ�evmax�MinðWs;TsÞ ð7Þ

GPPm ¼ fPAR�PARm�K NDVI�emmax�MinðWs;TsÞ ð8Þ
where evmax and emmax are the potential LUE of vascular and moss plants, respec-
tively. In this study, evmax is set at 2.14 g C m� 2 MJ� 1 APAR12,50, and emmax is
assumed to be 30% of evmax or 0.64 g C m� 2 MJ� 1 APAR based on previous
studies14,41,42. K_NDVI indicates the proportional contribution of moss to the
NDVI signal; PARv and PARm are the total photosynthetically active radiation
partitioned to the vascular and moss plants, respectively. The calculations of fPAR,
Ws and Ts are reported in equations (3), (4) and (5).

We used the Beer–Lambert law to exponentially partition PAR between the
vascular and moss surface:

PARm ¼ PAR� expð� k�LAIvÞ ð9Þ

PARv ¼ PAR� PARm ð10Þ

LAIv ¼ ð1�K NDVIÞ�LAI ð11Þ
where k is the light extinction coefficient (k¼ 0.5). LAI is MODIS LAI data, and the
proportional contribution of vascular plants to the LAI signal is assumed to be the
same as that of NDVI.

The linear relationship between NDVI and fPAR was used in EC-LUE, which
was supported by many studies50,51. The strong linear relationship of NDVI and
fPAR, derived from a total of 16 plant species of annuals, vines, deciduous and
evergreen shrubs and trees, was used in our model52. Strong linear relationships
between NDVI and field-measured fPAR were also observed at high-latitude
ecosystems53,54. Moreover, we compared the MODIS-fPAR product and fPAR

calculations based on NDVI in this study, and results showed that they were
comparable across almost all sites (Supplementary Fig. 6).

The EC-LUE-2p model and our study are built on two facts: first, ecosystem
GPP includes contributions from higher plants and moss (K_NDVI was used to
represent contributions to the satellite signal from moss in the model). In case of
no contribution from moss, K_NDVI would be zero. Second, the intrinsic LUEs of
higher plants and moss are different. This difference is the fundamental basis for
our ability to separate the contributions of moss and vascular plants. If ecosystem
GPP did not perform as highly as expected for vascular plants, it must contain
mosses that have a substantially lower photosynthetic capacity. This is the
biological foundation of the EC-LUE-2p model.

The only unknown in the model is K_NDVI, which can be solved analytically
according to equations (6)–(8):

K NDVI ¼ GPP� fPAR�PARv�evmax�MinðWs;TsÞ
fPAR�PARm�emmax�MinðWs;TsÞ� fPAR�PARv�evmax�MinðWs;TsÞ

ð12Þ

In reality, K_NDVI is solved statistically using estimates of GPP from EC
measurements, as we have done in this study. The biological and physiological
bases of the model (two facts described above) and the statistical optimization of
K_NDVI against EC measurements strictly and uniquely constrained the meaning
of K_NDVI.

For the EC-LUE-2p, PAR, Rn, T and LAI are model forcing data that can be
measured by EC towers and derived from satellite data. Potential LUEs of vascular
and moss plants (that is, evmax and emmax) are model parameters, which have been
determined as mentioned above. The only undetermined parameter is K_NDVI,
which is optimized at each EC site against GPP estimates. The regression procedure
(Proc NLIN) in the Statistical Analysis System (SAS, SAS Institute, Cary, NC, USA;
any use of trade, firm or product names is for descriptive purposes only and does
not imply endorsement by the US Government) was applied to optimize the values
for K_NDVI at each site.

At the regional scale, the relationship between K_NDVI and stand age (Fig. 3)
was used to calculate the spatial pattern of K_NDVI, based on the spatial
distribution map of forest age in Canada25,55. We validated this large-scale model
application at the site level. First, we used the relationship shown in Fig. 3 for each
site individually and calculated K_NDVI to simulate GPP. Second, the correlation
relationship between K_NDVI and stand age was recalculated by excluding a given
site, and the relationship was used to estimate K_NDVI and GPP at this site.
Simulations of GPP at these two schemes were then compared with observations.
The results showed good model performance using the relationship between
K_NDVI and stand age (Supplementary Fig. 7).

Model operation and forcing data at the EC sites. The EC-LUE and CASA
models were run at 8-day time steps at the EC sites. Environmental variables
measured at the EC sites were used to drive these two models. The 8-day NDVI
data with 1-km spatial resolution (MOD13) were retrieved at the EC sites. MOD13
has a quality control (QC) layer to indicate data reliability for each pixel (good
data, marginal data, snow/ice, cloudy and missing). In this study, we considered
NDVI data with a ‘marginal’ or ‘cloudy’ QC flag to be unreliable. We temporally
filled the missing or unreliable NDVI at each 1-km MODIS pixel based on its
corresponding quality assessment data field56. First, if the first (or last) 8-day NDVI
value is unreliable or missing, it will be replaced by the closest reliable 8-day value.
Second, other unreliable NDVI will be replaced by linear interpolation of the
nearest reliable value before it and the closest reliable value after it. If there are no
reliable NDVI values during the entire year, the annual maximum NDVI will be
chosen from unreliable periods in the current year and will be used as a constant
value across the entire year.

The 8-day MODIS evapotranspiration (ET) data (MOD16)57 at 1-km spatial
resolution was used to indicate actual ET, and potential ET (PET) was calculated by
the method of Thornthwaite58. The 8-day MODIS-GPP product (MOD17) data at
1-km spatial resolution were used to examine MODIS-GPP algorithm verification
at the EC sites. The same method that was used for NDVI was used to conduct data
QC and fill missing data gaps for MODIS-ET and -GPP products.

Statistical analysis. Three metrics were used to evaluate the performance of the
four models in this study: the coefficient of determination (R2), absolute predictive
error (PE) and RPE. PE quantified the difference between simulated and observed
values, and RPE was computed as

RPE ¼ S�O
O
�100 % ð13Þ

where S and O are mean simulated and mean observed values, respectively.

Field-measured LAI at seven Canada sites. Field-measured LAI of vascular
plants at seven adjacent Canada sites recovering from fire disturbances (that is, CA-
NS1, CA-NS2, CA-NS3, CA-NS5, CA-NS6, CA-NS95 and CA-NS7) was used to
compare with satellite NDVI values. LAI was measured by harvest20. The harvests
occurred shortly before the end of the growing season in 2004. Moreover, we used
8-day MODIS-NDVI product (MOD13). Figure 2 shows the mean NDVI values
from May to September during 2002–2006, and the error bars indicate s.d.
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Model forcing data over the regional scale. We used input data sets of Rn, T and
PAR from the Modern Era Retrospective-Analysis for Research and Applications
(MERRA)59 archive in 2004 to drive the CASA and EC-LUE models for regional
GPP estimation. The MODIS-GPP (MOD17) product was directly used in this
study. MERRA is a NASA reanalysis for the satellite era using a major new version
of the Goddard Earth Observing System Data Assimilation System Version 5
(GEOS-5), which was used to interpolate and grid these point data at short time
intervals, producing an estimate of climatic conditions for the world at 10 m above
the land surface (approximating canopy height conditions) and at a resolution of
0.5� latitude by 0.6� longitude. The MERRA reanalysis data set has been validated
carefully at the global scale using surface meteorological data sets to evaluate the
uncertainty of various meteorological factors (for example, temperature, radiation,
humidity and energy balance)60. This validation showed that MERRA considerably
reduced imbalances in energy and water61. Detailed information on the MERRA
data set is available at http://gmao.gsfc.nasa.gov/research/merra/.

Eight-day MODIS LAI/fPAR (MOD15), NDVI (MOD13) and ET (MOD16) at
1-km spatial resolution also were used to drive the CASA, EC-LUE and EC-LUE-
2p models for estimating regional GPP. The same method as that used at the EC
sites was used to conduct data QC and fill missing data gaps for MODIS products.
All satellite-based products were resampled at a resolution of 0.5� latitude by 0.6�
longitude to match that of the MERRA reanalysis data set.

Uncertainty of GPP Estimations. Figure 3 shows the correlation between
K_NDVI and stand age. To quantify the uncertainty, we calculated the 95% con-
fidence limits of the regression relationship between stand age and K_NDVI. The
high and low 95% confidence limits were used to quantify the maximum and
minimum GPP estimations, respectively.

This study used MODIS NDVI and LAI products of 1-km resolution to
estimate regional GPP using the EC-LUE, EC-LUE-2p and CASA models. These
products were generated from MODIS surface reflectance after correcting for the
effects of cloud contamination, ozone absorption and aerosols, and adjusted to
nadir and standard sun angles using bidirectional reflectance distribution function
models62. A simple linear interpolation method was used to fill unreliable or
missing NDVI or LAI data56, which may introduce additional uncertainty into our
GPP estimation. Moreover, we used the relationship between stand age and
contribution of moss to the satellite signal to improve regional GPP estimations.
However, we did not consider impacts of other factors on moss fraction cover, such
as vegetation, soils and surface water. On the basis of long-term measurement and
literature data, synthesis analysis showed substantial differences of moss cover in
the uplands and floodplains63.
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