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Terrestrial vegetation plays many pivotal roles in urban systems. However, the impacts of urbanization on vege-
tation are poorly understood. Here we examined the spatiotemporal trends of the vegetation activity measured
by MODIS Enhanced Vegetation Index (EVI) along Urban Development Intensity (UDI) gradient in 32 major
Chinese cities from2000 to 2012.We also proposed to use a new set of concepts (i.e., actual, theoretical, and positive
urbanization effects) to better understand and quantify the impacts of urbanization on vegetation activities. Results
showed that the EVI decreased significantly along a rising UDI for 28 of 32 cities (p b 0.05) in linear, convex or con-
cave form, signifying the urbanization impacts on vegetation varied across cities andUDI zoneswithin a city. Further,
the actual urbanization effects were much weaker than the theoretical estimates because of the offsetting positive
effects generated by multiple urban environmental and anthropogenic factors. Examining the relative changes of
EVI in various UDI zones against that in the rural area (ΔEVI), which effectively removed the effects of climate
variability, demonstrated that ΔEVI decreased markedly from 2000 to 2012 for about three-quarters of the cities
in the exurban (0.05 b UDI ≤ 0.25) and suburban (0.25 b UDI ≤ 0.5), and only half of the cities in the urban (0.5
b UDI ≤ 0.75) and urban core (0.75 b UDI ≤ 1). The stable or even increasing tendencies of ΔEVI in the urban and
urban core of many cities could primarily be attributed to the importance of positive effects derived from the
urban environment and the improvement of management and maintenance of urban green space. More work is
needed to quantify mechanistically the detailed negative and positive effects of urban environmental factors and
management practices on vegetation activities.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Human activities are now altering Earth's biosphere at a rate unseen
in recorded history (Vitousek et al., 1997; Foley et al., 2005). Among
these activities, urbanization, physically transforming vegetated surface
into impervious surface, is one of the most evident modifications on
Earth system (Grimm et al., 2008). Today, more than half of world's
population living in urban areas, and this number are projected to be
67% by 2030 (United Nations, 2012). Accompanying with the soaring
city dwellers, the global urban area is now expanding at twice their pop-
ulation growth rate (Angel et al., 2011). If the current trend continues,
the urban land area in 2030, is expected to nearly triple the area in
circa 2000 (Seto et al., 2012).

Urbanization can pose many effects on Earth environments (Grimm
et al., 2008). Among these, its impact on vegetation has received consid-
erable interest among scientists and urban planners, since vegetation
plays many pivotal roles in urban systems (Grimm et al., 2008; Jim and
Chen, 2009; Dallimer et al., 2011). Vegetation can reduce atmospheric
CO2 through assimilation (Imhoff et al., 2004; Myeong et al., 2006;
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Davies et al., 2011), air pollution through uptake via leaf stomata and
plant surface (Nowak et al., 2006; Salmond et al., 2013), noise pollution
through absorption by leaves, and dispersion, reflection and diffraction
by stems (Pathak et al., 2008), and stormwater run-off through retention
of rainwater (Oldfield et al., 2013). Additionally, it can regulate the
microclimate by altering local exchanges of heat, water vapor, and CO2

(Peters and McFadden, 2010). In particular, it can mitigate heat island
effects through transpiration, which could reduce energy consumption
and thus the CO2 emissions from the power plants (Myeong et al.,
2006; Park et al., 2012). These ecosystem services of urban vegetation
are closely related to the environmental quality, human heath, and sus-
tainable urban development (Kuo and Sullivan, 2001; Jim and Chen,
2009; Lee and Maheswaran, 2011; Gong et al., 2012).

The urban area can be considered as a composite of both “built-up”
(i.e., impervious surface) and “non-built-up” (i.e., vegetated or bare
land) surfaces, and the vegetation activity (refers to the ability of vege-
tation to interact with surrounding environments per unit urban area)
in urban areas could undergo changes during development mainly in
two opposite ways. On one hand, the increasing proportion of built-up
land for living and infrastructure would reduce the vegetated areas
directly,whichwas expected to pose negative effects on the overall veg-
etation activity, resulting in many environmental changes such as the
reduction in net primary production (Imhoff et al., 2004; Lu et al.,
2010) and the urban heat island (Arnfield, 2003). On the other hand,
several urban environmental and anthropogenic factors likely enhance
urban vegetation activity. For example, urban areas tend to havewarmer
temperatures, greater tropospheric CO2 concentrations, and higher
atmospheric nitrogen deposition compared with rural areas, which can
promote the plant growth in urban areas (Gregg et al., 2003; Zhang
et al., 2004; Searle et al., 2012). Meanwhile, the management of agricul-
tural and/or urban green space such as fertilization, irrigation, and green
space creation can largely offset the negative effects associated with
raising built-up intensities on vegetation activity (Yu and Padua,
2007; Manninen et al., 2010).

However, a systematic evaluation on the spatiotemporal trends of
vegetation activities along an urban development intensity gradient
across multiple cities over large areas is still lacking. Relatively limited
studies on the urban vegetation focused on the temporal trends or
were site-scale observations. For instance, Sun et al. (2011) showed
that the average urban Normalized Difference Vegetation Index (NDVI)
decreased significantly during the last three decades (p b 0.01) in
China. Salvati and Zitti (2012) found that the vegetation quality increased
slightly between 1975 and 2010 with a diverging trend between urban
and rural areas in a Mediterranean region. Jenerette et al. (2013)
suggested that the cumulative Enhanced Vegetation Index (EVI) in low-
density built-up areas were higher than grass, herb, and shrub land
covers of seven metropolitan regions in the southwestern United States.
Several key questions related to urban vegetation remain unanswered
to date: 1) what's the urbanization effects on the overall vegetation
condition in a city? 2) what's the magnitude of the positive urbanization
effects on urban vegetation conditions? and 3) how these urbanization
effects vary over time and space?

As the world's most populous country, China has experienced the
rapidest urbanization in past decades and this trend is expected to
continue in upcoming decades (Seto et al., 2011, 2012; United Nations,
2012). About half of China's population lives in urban areas now, and
this proportion is predicted to be 73% by 2050 (with an urban population
amounting to 1.04 billion) (United Nations, 2012). Meanwhile, China
covers a wide climate range, from the tropical to subarctic/alpine and
from rain forest to desert (Wu et al., 2005). These together make China
an ideal area to investigate the vegetation changes induced by urbaniza-
tion. Using a Moderate Resolution Imaging Spectoradiometer (MODIS)
EVI in conjunction with Landsat TM/ETM + images, we analyzed the
spatiotemporal trends of vegetation activities (as reflected by EVI) from
2000 to 2012 in 32 major cities across China. The main objectives of
this study were to (1) investigate the EVI trends along a rising urban
development intensity gradient, (2) explore new ideas to better quantify
the impacts of urbanization on vegetation conditions, and (3) examine
the temporal trends of EVI in parallel with rapid urbanization over the
past 13 years across cities in China.

2. Materials and methods

2.1. Remotely sensed vegetation activity and urban development intensity

We focused on 32 major cities in China in this study. Distributed
across all climatic zones of China, all these cities are municipalities or
provincial capitals except Shenzhen, which is China's first special eco-
nomic zone established in 1978 and is now considered as one of the
global fastest growing cities (Fig. 1). Most cities are mainly surrounded
by cultivated land except a few southern and northwestern sites that
were primarily surrounded by forests (e.g., Hangzhou and Fuzhou) or
grassland (Lhasa).

The boundaries of these 32 major cities were defined as follows.
First, the maximal areas were defined by China's official administrative
areas (i.e., city, shi) (Chan, 2010). Second, pixels within the administra-
tive boundaries that werewater body orwith elevationmore than 50m
higher than the highest point in the urban and urban core zones (see
definition below) were excluded from this analysis (Figs. 1 and 2)
because these pixels may overshadow the urbanization effects on
terrestrial vegetation activity (e.g., Imhoff et al., 2010).

We examined the vegetation activity across all cities from 2000 to
2012 using the version-5 MODIS/Terra EVI (MOD13A2) data (1 × 1 km2

spatial resolution and 16-day interval). Compared with NDVI, the EVI
minimizes canopy background variations while remains sensitive to
dense vegetation conditions (Huete et al., 2002).Moreover, it removes re-
sidual atmosphere contamination caused by smoke and sub-pixel thin
clouds using the blue band. EVI provides a continuous measure and
hence responds to small changes in vegetation activities (Dallimer et al.,
2011), and its accuracy has been assessed over awidely range of locations
and time periods (Huete et al., 2002). Thus the EVI is more appropriate
for monitoring vegetation dynamics in urban areas that are usually
covered by sparse vegetation (Zhang et al., 2004; Dallimer et al.,
2011). Noises caused by cloud contamination, atmospheric variability
and bi-directional effects (Chen et al., 2004) were further removed in
this analysis using an adaptive Savitzky–Golay filtering method
(Jönsson and Eklundh, 2004; Chen et al., 2004). To avoid spurious EVI
trends due to winter snow, we used EVI of growing season (defined as
April to October) to analyze vegetation activity (e.g., Zhou et al., 2001;
Piao et al., 2003) in this study.

Land cover maps within the administrative boundary of each city for
the year 2000, 2005, and 2010were derived fromLandsat TM/ETM+ im-
ages (downloaded from http://www.usgs.gov/ and http://datamirror.
csdb.cn/)with a spatial resolution of 30 × 30m2. First, the Landsat images
were preprocessed (e.g., re-projection, mosaic, histogram equalization)
using ERDAS Imagine version 9.2. Second, the land covers were classified
into three broad types (i.e., built-up land, water body, and other land)
using the maximum likelihood classification approach (Strahler, 1980).
The built-up land consisted of impervious surfaces. Water body included
reservoirs, ponds, and rivers. Other land covered all other land covers
such as cropland, forest, shrub, grass, and unused land. Finally, the accura-
cies of the classified products were assessed for 1) the products in 2010
and 2) the unchanged land covers between 2000 and 2010, using the
high-resolution images and pictures incorporated in Google Earth Pro®
(GE) (Zhou et al., 2012). The accuracy requirement for classification has
been met since the Kappa coefficients, measuring classification accuracy
(Foody, 2002), ranged from 0.77 to 0.93 for the 32 cities with most of
them larger than 0.80.

The Urban Development Intensity (UDI), defined as the proportion
of built-up areas in each 1 × 1 km2 grid based on the 30 × 30 m2

urban land covermaps, wasmapped using a 1 × 1 km2movingwindow
(in order to keep accordance with the size of the MODIS EVI pixels) for



Fig. 1.Vegetationmap of China (this data set is provided by “Environmental & Ecological ScienceData Center forWest China, National Natural Science Foundation of China” (http://westdc.
westgis.ac.cn)) and the cities including in this study. All the sites are provincial capitals or provincial/autonomous regional capitals except Shenzhen,which is China's first special economic
zone and is now considered oneof the fastest growing cities in theworld. The boundaries of these 32major cities (study areas)were defined according to China's official definitions of their
administrative areas (i.e., city, shi). The black areas on the map were included in this analysis, which excluded the altitude effects and water pixels.
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the year 2000, 2005, and 2010. We further stratified the landscape into
five zones based on the UDI. Emanating inward from the lowest
to the highest UDI in a city (Fig. 2), these five zones were rural
(UDI≤ 0.05) and four urban zones (exurban [0.05 b UDI≤ 0.25], subur-
ban [0.25 b UDI ≤ 0.5], urban [0.5 b UDI ≤ 0.75], and urban core [0.75
b UDI ≤1]). The rural area was usually covered by both cultivated and
natural vegetation, while the exurban and suburban areas were mainly
covered by cultivated vegetation besides built-up land (Fig. 2).

2.2. EVI trends along UDI gradients

The zonal mean growing season EVIs in the five UDI zones (rural,
exurban, suburban, urban, and urban core) were calculated over the
period 2000–2012 for all the 32 cities. For the years without UDI
A B

Fig. 2. Beijing areamaps of (A) Landsat TM false color image acquired on Sept 3, 2005with a spa
(C) regions with different urban development intensity (UDI) that was derived from urban lan
urban, UDI= 0.5–0.75; urban core, UDI N 0.75–1), and (D) averaged growing season (April to O
cluded in the analysis, which were either water bodies or areas excluded by elevation conside
maps, we assumed that the UDI maps in 2000, 2005, and 2010 can be
applied to 2001–2004, 2006–2009, and 2011–2012, respectively. Linear
regression analysis was performed to examine the decaying rate of EVI
with increasing UDI for each city. The impacts of background vegetation
condition (reflected by rural EVI) on the EVI decaying rate was also
assessed with the hypothesis that the city with a better background
EVI should have a greater decaying rate. We also explored the climatic
effects (mean annual precipitation [MAP] and temperature [MAT]) on
the spatial variability of the EVI decaying rates across cities. Annual
climate data of precipitation and temperature from 2000 to 2012 for
each city was obtained from Chinese Meteorological Observations
(http://cdc.cma.gov.cn/). The Pearson's correlation and general linear
regression analyses were performed in SPSS PASW Statistics 18 (SPSS
Inc.).
C D

tial resolution of 30m× 30m, (B) urban land covermap derived from Landsat TM images,
d cover map (i.e., rural, UDI b 0.05; exurban, UDI= 0.05–0.25; suburban, UDI= 0.25–0.5;
ctober, 2005) Enhanced Vegetation Index (EVI). The blank areas on the mapwere not in-

ration.
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Since the EVI in urban core (themost urbanized area)would impossi-
bly exceed that in its corresponding rural area due to the transformation
of vegetated surface into impervious surface by urbanization, the vegeta-
tion activity should decrease along the UDI gradients. Moreover, the EVI
decline patterns (refers to “EVI–UDI” thereafter) may differ by city
(Yuan and Bauer, 2007; Luck et al., 2009). With this in mind, we used
three possible forms (i.e., “Linear”, “Convex”, and “Concave”) to differen-
tiate the significant decline patterns (when p b 0.05) among cities
(Fig. 3). “Linear” means that the EVI decreased linearly with rising UDI.
“Convex” indicates that the EVI decreased significantly with UDI, but
was in a relatively lower decaying rate or even slight upward trend
first, followed by a faster decrease with increasing UDI. This trend is
possible for the cities with relatively higher EVI per vegetated pixel in
the exurban or suburban compared with rural zones. In contrast to
“Convex”, “Concave” suggests a sharp decrease of EVI first, then followed
by a relatively low declining rate, which is likely to occur in a city with
high rural EVI.

In parallel with linear regression analysis, quadratic regression
analysis was performed for each city to detect the presence of the
“Concave” or “Convex” trend:

y ¼ b2x
2 þ b1xþ b0 ð1Þ

where b2 indicates whether the EVI was in “Convex” (b2 b 0) or
“Concave” (b2 N 0) downward trends aswell as the convexity or concav-
ity. The larger |b2| indicates the greater convexity or concavity.

Since the five EVI data points along the UDI gradient in each city
(i.e., rural, exurban, suburban, urban, and urban core) are not enough
for us to distinguish these three EVI–UDI forms statistically, we calculated
themean zonal EVIs using tenUDI bins from0 to 1with an interval of 0.1.
The goodness of the fit of the linear and quadratic regression models
was evaluated by the corrected Akaike Information Criterion (AICc)
(Motulsky, 2004; Symonds and Moussalli, 2011):

AICc ¼ N� ln
RSS
N

� �
þ 2K þ 2K kþ 1ð Þ

N−K−1
ð2Þ

where N is the number of data points, K is the number of parameters fit
by the regression plus 1, and RSS is the residual sum of squares of the
model. When comparing two models, the model with the lower AICc
score is considered the better one. In addition, the significance of the
difference between the linear and quadratic regression models for
each citywas also tested using ANOVA. All regression analyses, AICc cal-
culation, and ANOVA analysis were performed using R (R Development
Core Team, 2013).
Fig. 3.Conceptualmodels describe the changes of vegetation indexwith urbandevelopment
intensity.
2.3. Methods to quantify the AUE, TUE, and PUE

To our knowledge, no study had ever been conducted to quantify the
actual urbanization effects (AUE), theoretical urbanization effects (TUE,
provided without positive effects associated with the urban environ-
ment), and the positive urban effects (PUE, facilitated by urban environ-
mental and anthropogenic factors) on the overall vegetation conditions.
Specifically, we defined the AUE, TUE, and PUE as the percent relative
changes of the actual to background, theoretical to background, and
actual to theoretical vegetation conditions, respectively. Those effects
were then quantified in the following steps:

a) We hypothesized that the background EVI for each city can be
represented by its rural EVI (Fig. 4).

b) We assumed that the theoretical EVI for built-up land was 0.05, and
that for non-built-up pixels equaled to the background EVI in the
city. The value of 0.05 was selected for the built-up land because
there was no vegetation activity under this threshold (Huete et al.,
2002).

c) The theoretical EVI of certain urban zone for a particular citywas then
estimated as the area-weightedmean EVI of both built-up (i.e., 0.05)
and non-built-up (i.e., rural EVI) pixels. For example, the theoretical
EVI for suburban (the mid-value of the UDI range is 0.375) was esti-
mated as: [rural EVI] × (1–0.375) + 0.05 × 0.375.

d) We defined the background vegetation condition (VEGback) as the
area of the rectangle of the rural EVI over the UDI range (i.e., 1)
([rural EVI] × 1]), and the actual vegetation condition (VEGactual)
as the integral of the actual EVI over the UDI range ([rural EVI] ×
0.05 + [Exurban EVI] × 0.20 + [Suburban EVI] × 0.25 + [Urban
EVI] × 0.25 + [Urban core EVI] × 0.25), respectively. Similarly, the
theoretical vegetation condition (VEGtheory)was definedas the integral
of theoretical EVI over the UDI range (Fig. 4).

e) The AUE, TUE, and PUE were then calculated as follows:

AUE ¼ VEGactual−VEGbackð Þ=VEGback � 100% ð3Þ

TUE ¼ VEGtheory−VEGback

� �
=VEGback � 100% ð4Þ

PUE ¼ VEGactual−VEGtheory

� �
=VEGtheory � 100%: ð5Þ
Fig. 4. Conceptual map shows the background, theoretical (assuming no positive
urban effect), and actual vegetation activities along an urban development intensity
(UDI) gradient.
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Table 1
Pearson's correlation coefficients between the linear decaying rates of Enhanced
Vegetation Index (EVI) along the Urban Development Intensity (UDI) gradients (EVI–UDI)
or the annual change rates of the EVI in urban zones relative to the base condition in the
rural area (ΔEVI) from 2000 to 2012 and the potential drivers across cities. ΔUDI indicates
theUDI changes between 2000 and2010.MAT andMAP represent themean annual temper-
ature and precipitation, respectively. The combined explanation rates of all factors are esti-
mated using general linear regression analysis.

Spatiotemporal
trends of EVI

Pearson's correlations
(N = 32)

Explanation
rate (%)

ΔUDI Rural EVI MAT MAP

EVI–UDI – −0.85a −0.60a −0.59a 72.6a

ΔEVI
2000-2012

Exurban −0.49a −0.31 −0.51a −0.27 46.8a

Suburban −0.41⁎ −0.35 −0.42⁎ −0.31 32.6⁎

Urban −0.44⁎ −0.28 −0.26 −0.26 28.6
Urban core −0.14 −0.14 −0.00 −0.09 11.7

a Significant at the 0.01 level; ⁎significant at the 0.05 level.
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2.3.1. Temporal trends of EVI in different urban zones
In order to examine the EVI trends over time induced by rapid

urbanization from 2000 to 2012, the annual mean growing season EVI
was estimated for the period 2000–2012 using the UDI zones of the
year 2000. To remove the possible effects of inter-annual climate vari-
ability on the EVI fluctuations, we used rural EVI as a base EVI condition
assuming that urbanization has little impact on rural EVI, and analyzed
the temporal trends of EVI over urban zones (i.e., exurban, suburban,
urban, and urban core) for each city by calculating the EVI differences
between them and their corresponding rural areas (ΔEVI) (e.g.,
Dallimer et al., 2011). The vegetation activity in an urban zone was as-
sumed constant if an insignificant ΔEVI trend over time was observed.
Linear regression models were used to test for temporal patterns of
ΔEVI for each city separately. We also evaluated the temporal trends
of rural EVI using linear regression to examine the possible trend as a
result of climate variability or/and human activities (e.g., tree planting
or deforestation, and cropland management). Finally, we calculated the
Pearson's correlation coefficients between the background EVI, MAP, or
MAT and the annual change rates ofΔEVI across cities. The general linear
regression analysis was conducted to examine the overall explanation
rate of these drivers to the observed change of ΔEVI. Latitudinal and
longitudinal informationwere not used in the analysis as they are closely
related to climate variables in China (Wu et al., 2005).
3. Results

3.1. Spatial trends of average growing season EVI with rising UDI

The area-weighted growing season EVI averaged from 2000 to 2012
decreased significantly (p b 0.05) with elevating UDI for 28 of 32 cities
(Fig. 5A). The EVI–UDI trends in three arid cities (Lanzhou, Urumqi,
and Lhasa) and the country's most developed city (Shanghai) were
not statistically significant. The significant EVI decaying rates along the
rising UDI gradient (reflected by the linear regression slope) varied
with geographic locations from−0.322 in Haikou to−0.070 in Taiyuan
(Fig. 5A). Overall, cities with humid-hot climates (e.g., Haikou,
Guangzhou, and Fuzhou) had larger decaying rates than those with
dry-cold climates (e.g., Xining, Yinchuan, and Taiyuan). As expected,
the EVI decaying rates were negatively related to the background vege-
tation conditions (r = −0.85, p b 0.01) (Table 1). Moreover, MAT and
MAP related closely and negatively to EVI decaying rates (r = −0.60
A

Fig. 5. Spatial distribution of the EVI decaying rates (A) and the EVI–UDImodes (B) in China's 32
the period 2000–2012. We excluded Shanghai from the general correlation analysis because of
EVI). BJ: Beijing; CC: Changchun; CS: Changsha; CD: Chengdu; CQ: Chongqing; FZ: Fuzhou; GZ:
JN: Jinan; KM: Kunming; LZ: Lanzhou; LS: Lhasa; NC: Nanchang; NJ: Nanjing; NN: Nanning; SH
Urumqi; WH: Wuhan; XA: Xi'an; XN: Xining; YC: Yinchuan; ZZ: Zhengzhou.
and −0.59, respectively, and p b 0.01). Together, they contributed
72.6% of the total variance in EVI decaying rates across cities (Table 1).

In addition, we found that the significant EVI decline trends can be
further grouped into three types (“Linear”, “Convex”, and “Concave”)
with evident geographic clusters (Fig. 5B). The “Linear”decrease occurred
in various geographic zones of China (15 cities), the “Convex” pattern
mainly happened in the north and northeastern (e.g., Changchun,
Hohhot, and Tianjin) parts of China (11 cities), and the “Concave”
appeared in two southwestern cities (Kunming and Nanning).

3.2. The AUE, TUE, and PUE on vegetation conditions

As shown in Fig. 6A, urbanization actually (i.e., AUE) posed negative
effects on vegetation conditions in all the cities except two arid cities
(Urumqi and Lanzhou) and Shanghai where positive effects were ob-
served. The positive value in Shanghai should be mainly attributed to
our underestimation of its background EVI using its rural one because
the impacts of urbanization in Shanghai, country's largest and most
modern city, extend far beyond its urban zones (Zhao et al., 2006).
This can also be seen from the fact that the rural EVI in Shanghai is
notably lower than those of its neighbors (e.g., Hangzhou and Nanjing)
(Fig. 6).We thus excluded Shanghai from the following general analysis.
The AUE ranged from −40% in Haikou to 17% in Urumqi, and corre-
lated significantly and negatively to the background EVI (r = −0.83,
B

major cities,with background color indicating themean growing season EVI averaged over
our possible underestimation of its background vegetation condition (as reflected by rural
Guangzhou; GY: Guiyang; HK: Haikou; HZ: Hangzhou; HB: Harbin; HF: Hefei; HT: Hohhot;
: Shanghai; SY: Shenyang; SZ: Shenzhen; SJZ: Shijiazhuang; TY: Taiyuan; TJ: Tianjin; UQ:

image of Fig.�5
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Fig. 6. The actual urbanization effects (AUE), theoretical urbanization effects (TUE), and positive urban effects (PUE) on the overall vegetation conditions in 32 major Chinese cities, and their
relationships with city's background vegetation conditions as reflected by rural EVI. The PUEmeans the positive effects facilitated bymultiple urban environmental and anthropogenic factors
on vegetation activity.
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p b 0.01). However, the AUE were much lower than the theoretical
urbanization effects (i.e., TUE) for all the cities (Fig. 6A), mainly due to
the positive urban effects (i.e., PUE) facilitated by multiple urban envi-
ronmental and anthropogenic factors (Fig. 6B). Specifically, the PUE,
indicated by the percent relative changes of the actual to theoretical
vegetation conditions, were all positive, ranging from 7% in Haikou to as
much as 64% in Urumqi. The PUE related tightly and negatively to the
background EVI across cities in China (r =−0.66, p b 0.01) (Fig. 6B).

3.3. Temporal trends of the mean growing season EVIs in different
urban zones

The temporal trends of vegetation activities differed greatly across
urban zones and cities from 2000 to 2012 (Fig. 7, Table 2). Relative to
the rural base condition (i.e., ΔEVI), the ΔEVI declined significantly for
most cities in the exurban (24 of 32) and suburban (25 of 32), but
only around half cities in the urban (17 of 32) and urban core (16 of
32). The maximal decreasing rate of −0.006 yr−1 occurred in Hefei
in its urban zone. Three cities (i.e., Beijing, Kunming, and Shenzhen)
presented a significant decrease of ΔEVI in the exurban only, one city
(Hangzhou) exhibited no apparent change of ΔEVI in all urban zones,
and three cities (i.e., Nanjing, Shanghai, and Urumqi) even showed an
obvious increase ofΔEVI in the urban core over thewhole study period.
In addition, ΔEVI in the urban zones of many cities showed evident
increases or remained stable (e.g., Changsha, Chengdu, Chongqing,
Kunming, and Nanjing) in the later of the study period.

The background EVI, MAT, andMAP hadweaker correlationswith the
temporal trends of ΔEVI in urban areas than those on decaying rates of
EVI along the UDI gradient (Table 1). The correlation was only evident
for MAT in the exurban and suburban areas (p b 0.05). In contrast, the
UDI changes between 2000 and 2010 related significantly and negatively
to the annual rates of ΔEVI in all urban zones except in the urban core. In
general, the four factors together explained less than half of the total
variations in ΔEVI trends across cities and their explanatory powers
declined with increasing UDI levels (i.e., 46.8%, 32.6%, 28.6%, and 11.5%
for exurban, suburban, urban, and urban core, respectively).

4. Discussion

Vegetation, an integral component of the urban environment, plays
many key roles in urban systems (Grimm et al., 2008; Jim and Chen,
2009). However, vegetation dynamics induced by urbanization
remained poorly understood over large areas because they were hardly
inventoried by traditional ground surveys due to highly complicated
urban landscape configuration and rapid changes of urban vegetation
(Sudha and Ravindranath, 2000; Myeong et al., 2006; Liu and Yang,
2013). The use of the MODIS EVI (1 × 1 km2) in combination with
high resolution Landsat TM/ETM + (30 × 30 m2) data provides us a
cost-effective approach to quantify urban vegetation activity in a timely
and spatial-explicitly manner (Stefanov and Netzband, 2005). We
explored not only the temporal trends of EVI like the most previously
efforts did (e.g., Sun et al., 2011; Salvati and Zitti, 2012), but also the
trends of EVI along urban development intensity (i.e., UDI) gradient.
Since China is characterized by complex climate conditions and large
geographical extent (Piao et al., 2003; Wu et al., 2005), the results
derived from this analysis might help enhance our understanding of
vegetation dynamics caused byurbanization both regionally and globally.
The quantitativemethods originated from this study (e.g., the evaluations
of AUE, TUE, and PUE) might also provide new insights for future efforts
to evaluate the urbanization effects on vegetation over large areas.

Our results showed that the EVI reduced significantly with raising
UDI for most of the cities except an insignificant change occurred in
few arid cities (Figs. 5A), which was in accordance with the previous
knowledge (Imhoff et al., 2000; Sun et al., 2011). We found that the
EVI decaying rates across cities correlated negatively with rural EVI
(Table 1) because urbanization likely posesmore strong negative effects
on vegetation in the citieswith better backgroundvegetation conditions
(reflected as rural EVI) (Imhoff et al., 2000). The EVI decaying rates also
linked tightly to climate factors (mean annual temperature and precip-
itation) because the large-scale variability of the background vegetation
conditions was strongly influenced by climate (Nemani et al., 2003;
Zhang et al., 2004). We also found that not all EVI–UDI relationships
were linear in cities. “Convex” and “Concave” patterns can be formed
under certain natural and anthropogenic influences. For example, two
southwestern cities (Kunming and Nanning) presented a “Concave”
trend mainly because of the strong vegetation activity in the rural
zones owing to their humid-hot climates (Piao et al., 2003; Wu et al.,
2005). In contrast, some northern and eastern cities (11 cities) showed
a “Convex” decrease primarily due to intensive land use activities (e.g.,
agricultural practices and urban green landmanagement) in the exurban
or/and suburban, which led to higher vegetation activity per vegetated
surface compared with its rural counterpart (e.g., Allen, 2003; Piao
et al., 2003). Notably, human activities can alter the shape of EVI–UDI re-
lationship. For instance, the EVI–UDI relationship in Shanghai was not
significant even though it was located in a humid-hot region. This
might be attributed to (1) the relatively high vegetation activities in the
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Fig. 7. Anomalies of the area-weighted mean growing season EVI in rural area and the EVI differences between urban zones (i.e., exurban, suburban, urban, and urban core) and corre-
sponding rural area (i.e., ΔEVI) from 2000 to 2012 for China's 32 major cities.
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urban zones resulted fromurban green landmanagement activities in the
city, and (2) our possible underestimation of its background vegetation
condition, which can be seen from the better background EVIs in its
neighboring cities such as Hangzhou and Nanjing.

Urbanization posed negative effects on the overall vegetation
conditions in most of the cities (Fig. 6). The actual urbanization effects
(i.e., AUE) were much weaker than the potential theoretical effects
(i.e., TUE) because of the positive effects generated by the urban envi-
ronment (i.e., PUE) such as the favorable plant growth conditions
(Gregg et al., 2003; Zhang et al., 2004; Searle et al., 2012) and green
land management (Yu and Padua, 2007; Manninen et al., 2010). The
negative urbanization effect was observed more evident in the city
with better background vegetation condition and the opposite occurred
for the PUE, suggesting that it's relatively easier to conserve vegetation
activities in cities with poor background vegetation conditions during
urban development. Particularly, urbanization even improved the veg-
etation conditions in two arid cities (i.e., Urumqi and Lanzhou) thanks
to the large PUE effects (Fig. 6), which agreed well with the findings
from seven arid cities in the United States (Jenerette et al., 2013).

Temporally, we found that the vegetation activitywasmore likely to
decrease in the exurban and suburban (overmore than three-quarters of
cities) than that in the urban and urban core (only around half of the
cities) (Fig. 7, Table 2). These can be attributed to three possible reasons:
(1) relatively better vegetation condition in the exurban and suburban
than that in the urban andurban core, (2)more urban built-up expansion
occurred inside the exurban and suburban over time, and (3)more inten-
sive management and maintenance of urban green space in the urban
and urban core. Similar findings were observed from a study on the cor-
relations of changes in vegetation quality and the distribution anddensity
of urban settlement in two Mediterranean cities (Athens and Rome)
(Salvati and Ferrara, 2013). Notably, some cities in our study even
witnessed an evident recovery following a decrease in vegetation condi-
tions in the urban or/and urban core possibly owing to the improvement
of management and maintenance of urban green space in recent years.
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Table 2
Linear regression examining the temporal trends of rural EVI and theΔEVI in urban zones (i.e., exurban, suburban, urban, and urban core) relative to the base rural condition (unit: 10−3)
for China's 32 major cities from 2000 to 2012.

City Rural EVI (N = 13) EVI difference between urban zones and rural area (N = 13)

Exurban Suburban Urban Urban core

Slope R2 Slope R2 Slope R2 Slope R2 Slope R2

Beijing 0.68 0.05 −1.02 0.62b −0.71 0.30 0.10 0.01 0.56 0.11
Changchun 1.89 0.34a 0.07 0.03 −0.30 0.13 −1.32 0.64b −1.64 0.53b

Changsha 0.79 0.05 −1.17 0.89c −2.84 0.75c −3.47 0.67b −1.54 0.25
Chengdu −0.42 0.01 −1.21 0.72c −1.49 0.42a −1.67 0.30 1.32 0.13
Chongqing 0.56 0.02 −2.32 0.79c −2.36 0.68b −1.89 0.47a −3.54 0.55b

Fuzhou 1.03 0.12 −1.50 0.73c −3.18 0.73c −1.23 0.30 −1.30 0.20
Guangzhou 0.93 0.09 −0.71 0.38a −0.93 0.32a −0.44 0.06 −0.66 0.11
Guiyang 1.77 0.20 −0.98 0.39a −1.72 0.49b −0.79 0.26 −1.67 0.30
Haikou 1.57 0.24 −1.18 0.66b −2.66 0.74c −4.15 0.85c −2.09 0.49b

Hangzhou −1.69 0.27 −0.31 0.15 −0.80 0.30 −0.60 0.17 0.78 0.27
Harbin 0.73 0.15 0.75 0.34a 0.327 0.06 −0.80 0.26 −2.018 0.68b

Hefei 2.36 0.45⁎ 0.02 0.00 −3.31 0.85c −5.66 0.82c −5.03 0.77c

Hohhot 1.52 0.18 −0.84 0.72c −2.08 0.78c −2.82 0.82c −2.70 0.67b

Jinan 3.26 0.43a −0.04 0.01 −1.49 0.62b −3.36 0.72c −3.22 0.57b

Kunming −0.65 0.03 −0.95 0.47a −0.42 0.03 0.73 0.08 1.53 0.19
Lanzhou 0.53 0.03 −0.61 0.36a −1.20 0.41a −0.14 0.01 −0.42 0.08
Lhasa −1.16 0.44a 0.29 0.16 −1.54 0.50b −0.68 0.30 −0.76 0.15
Nanchang 2.33 0.33a −0.75 0.18 −2.13 0.37a −2.41 0.31 −1.87 0.41a

Nanjing −1.27 0.19 −1.08 0.79c −1.82 0.78c −0.84 0.20 1.43 0.31a

Nanning 2.01 0.32a −1.52 0.77c −3.14 0.91c −3.92 0.91c −2.76 0.64b

Shanghai −1.22 0.49b −1.78 0.83c −2.32 0.89c −1.44 0.76c 0.73 0.32a

Shenyang 1.14 0.23 −0.05 0.04 −0.807 0.56b −0.99 0.43a −0.27 0.03
Shenzhen 1.29 0.49b −0.68 0.43a −0.19 0.08 −0.23 0.10 0.48 0.13
Shijiazhuang −0.39 0.02 −0.21 0.42a −0.65 0.72c −1.35 0.60b −0.18 0.01
Taiyuan 4.01 0.76c −1.43 0.75c −2.06 0.71c −2.40 0.71c −2.44 0.71c

Tianjin 1.60 0.15 −0.84 0.61b −1.47 0.53b −1.80 0.46a −1.47 0.22
Urumqi 0.00 0.00 −0.16 0.08 0.31 0.14 −0.35 0.17 0.91 0.55b

Wuhan 1.62 0.17 −0.67 0.35a −0.98 0.35a −1.60 0.44a −1.20 0.26
Xi'an 1.32 0.17 −0.55 0.34a −1.89 0.90c −2.93 0.82c −2.19 0.55a

Xining 1.03 0.12 −0.89 0.63b −1.78 0.67b −1.43 0.35a −2.08 0.39a

Yinchuan 0.73 0.12 −0.84 0.78c −1.54 0.42a −0.68 0.13 0.89 0.11
Zhengzhou 2.04 0.32a −0.56 0.40a −2.70 0.85c −2.86 0.73c −3.11 0.75c

a Significant at 0.05 level.
b Significant at 0.01 level.
c Significant at 0.001 level.
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The temporal trends of EVI, relative to the base condition in the rural area
(ΔEVI), related strongly to human activities. For example, the UDI
changes, induced primarily by human activities, related significantly
andnegatively to the temporal changes ofΔEVI in the exurban, suburban,
and urban zones across cities (p b 0.05) because UDI increase directly re-
duced the vegetated surface. As illustrated in Fig. 8, the area-weighted
meanUDI increasedmost rapidly in the suburban over the recent decade,
followed by the urban and exurban, withmuch lower increase rate in the
urban core for nearly all the cities. This in part explained thephenomenon
that the number of cities that experienced significantΔEVI decrease over
Fig. 8. Changes of the area-weighted mean UDI
time in the urban core was much less than that in the exurban and
suburban. At the same time, Chinese municipal governments have put
in efforts in creating new green areas or preserving existing green spaces
in conjunction with rapid urbanization in recent years (Yu and Padua,
2007; Zhao et al., 2013), and that might mainly contribute to the stable
or even increasing tendencies of ΔEVI in urban areas of many cities
experiencing simultaneous urbanization intensification.

The major concern of the urbanization effects on vegetation is its
influences on both eco-environments and human well beings. Many
studies indicated that the rapid urbanization in China decreased net
in different UDI zones from 2000 to 2010.
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primary production significantly in the past two decades (Piao et al.,
2005; Lu et al., 2010;Wu et al., 2014). The negative urbanization effects
on vegetation conditions observed in this analysis further corroborated
this finding as EVI is a surrogate of ecosystem production (Sjöström
et al., 2011; Wu et al., 2011). The reduction in vegetation activity
would intensify urban heat island, which might not only amplify the
energy consumption directly but also pose a major public health threat
(Patz et al., 2005; O'Loughlin et al., 2012; Gong et al., 2012). As China's
urbanization is likely to continue in upcoming decades (United Nations,
2012; Seto et al., 2012), it's urgent to adopt a sustainable urban plan to
minimize vegetation losses and to enhance the vegetation activity over
urban areas to maximize the multiple benefits associated with urban
vegetation. Our detailed study on the spatiotemporal trends of vegetation
activity with urban development across China provides useful informa-
tion for future urban planning.

Uncertainties remain in the results from this analysis. First, large
area differences existed amongUDI zones for a particular city and across
cities, which may affect the area-weighted mean vegetation indexes.
Second, we used the empirical value of the rural EVI to represent city's
background vegetation condition, which may introduce uncertainty.
Third, we assumed that there were no urbanization effects in rural
areaswhen studying the impacts of urbanization on vegetation. Actually,
our results showed that the UDI in the rural zone increased over time for
all the cities albeitwith a smallmagnitude, suggesting that the EVI differ-
ence between urban and their corresponding rural areas (i.e., ΔEVI)
might be overestimated. Fourth, we did not conduct a detailed attribu-
tion analysis on the phenomena that urban areas had higher EVI than
in rural areas. Although the possible driving forces include intensified
vegetation management (e.g., irrigation, fertilization, choice of species)
and/or some other urban characteristic (e.g., higher temperature, CO2,
nitrogen deposition, and lower O3), other alternative explanations are
equally possible. For example, the rural areas, largely cultivated, do not
exhibit the full EVI that would be expected if they were vegetated with
the same species as urban areas. Despite these uncertainties, ourfindings
showed large reduction of vegetation activities with urban development
in space and time, and at the same time, highlighted the importance of
positive effects generated in urban areas. More work is needed to quan-
tify the detailed negative and positive effects of urban environmental
factors (such as CO2, temperature, nitrogen deposition and O3) and
management practices on vegetation activities, and to understand
other potential driving forces on the modification of EVI in urban
environments.
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